Home
Class 12
MATHS
If sin ( x+y) +cos (x+y) =log (x+y) ,th...

If ` sin ( x+y) +cos (x+y) =log (x+y) ,then (d^(2)y)/(dx^(2))=`

A

` (-y)/( x)`

B

` -1`

C

` 0`

D

` 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given equation twice. Let's go through the steps systematically. ### Step 1: Differentiate the given equation We start with the equation: \[ \sin(x+y) + \cos(x+y) = \log(x+y) \] We will differentiate both sides with respect to \(x\). ### Step 2: Apply the chain rule Differentiating the left side: \[ \frac{d}{dx}[\sin(x+y)] + \frac{d}{dx}[\cos(x+y)] \] Using the chain rule: \[ \cos(x+y) \left(1 + \frac{dy}{dx}\right) - \sin(x+y) \left(1 + \frac{dy}{dx}\right) \] Now differentiating the right side: \[ \frac{d}{dx}[\log(x+y)] = \frac{1}{x+y} \left(1 + \frac{dy}{dx}\right) \] ### Step 3: Set the derivatives equal Now we set the derivatives equal to each other: \[ \cos(x+y) \left(1 + \frac{dy}{dx}\right) - \sin(x+y) \left(1 + \frac{dy}{dx}\right) = \frac{1}{x+y} \left(1 + \frac{dy}{dx}\right) \] ### Step 4: Factor out \(1 + \frac{dy}{dx}\) We can factor out \(1 + \frac{dy}{dx}\) from both sides: \[ (1 + \frac{dy}{dx}) \left(\cos(x+y) - \sin(x+y)\right) = \frac{1}{x+y} (1 + \frac{dy}{dx}) \] ### Step 5: Solve for \(\frac{dy}{dx}\) Assuming \(1 + \frac{dy}{dx} \neq 0\), we can divide both sides by \(1 + \frac{dy}{dx}\): \[ \cos(x+y) - \sin(x+y) = \frac{1}{x+y} \] ### Step 6: Find \(\frac{dy}{dx}\) Now we can rearrange the equation to find \(\frac{dy}{dx}\): \[ 1 + \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -1 \] ### Step 7: Differentiate again to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\) again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}[-1] = 0 \] ### Final Answer Thus, we have: \[ \frac{d^2y}{dx^2} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=x log x ,then (d^(2)y)/(dx^(2))=

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y=log(sin x), find (d^(2)y)/(dx^(2))

If y= x^(2) (sin x+cos x) ,then (d^(2)y)/(dx^(2))=

If : sin(x+y)+cos(x+y)=log(x+y)," then: "(dy)/(dx)=

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

If sin(x+y)+cos(2x+2y)=ln(3x+3y) ,then (dy)/(dx) is