Home
Class 12
MATHS
If y=x log x ,then (d^(2)y)/(dx^(2))=...

If ` y=x log x ,then (d^(2)y)/(dx^(2))=`

A

` (1)/(x) `

B

` (-1)/(x^(2))`

C

` 1`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = x \log x \), we will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Using the product rule for differentiation, where if \( u = x \) and \( v = \log x \), then: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): - \( u = x \) implies \( \frac{du}{dx} = 1 \) - \( v = \log x \) implies \( \frac{dv}{dx} = \frac{1}{x} \) Now applying the product rule: \[ \frac{dy}{dx} = x \cdot \frac{1}{x} + \log x \cdot 1 \] This simplifies to: \[ \frac{dy}{dx} = 1 + \log x \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} = 1 + \log x \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(1 + \log x) \] Since the derivative of a constant (1) is 0, we only need to differentiate \( \log x \): \[ \frac{d^2y}{dx^2} = 0 + \frac{1}{x} \] Thus, we have: \[ \frac{d^2y}{dx^2} = \frac{1}{x} \] ### Final Answer \[ \frac{d^2y}{dx^2} = \frac{1}{x} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

If sin ( x+y) +cos (x+y) =log (x+y) ,then (d^(2)y)/(dx^(2))=

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

If y=log(sin x), find (d^(2)y)/(dx^(2))

If y=log (log x) then (d^2y)/(dx^2) is equal to

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=log x/x show that,[(d^(2)y)/(dx^(2))]_(x=1)=-3

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=x^x , find (d^2y)/(dx^2) .

    Text Solution

    |

  2. If y= x^(2) (sin x+cos x) ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  3. If y=x log x ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  4. If y=e^(x) sin 3x ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  5. If y= e^(4x) cos 5x ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  6. If y= e^(2x) tan x ,then ( d^(2)y)/(dx^(2))=

    Text Solution

    |

  7. If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

    Text Solution

    |

  8. If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  9. If y = x^(3)log ( log (1+x) ) ,theny''(0) =

    Text Solution

    |

  10. If y={"log"(x+sqrt(x^2+1))}^2,"s h o wt h a t"(1+x^2)(d^2y)/(dx^2)+x(...

    Text Solution

    |

  11. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  12. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  13. (i) If y^(1//m) + y^(-1//m) = 2x then prove that (x^(2)-1) (d^(2)y)/(...

    Text Solution

    |

  14. If y="sin"(sinx),"p r o v et h a t" (d^2y)/(dx^2)+tanx(dy)/(dx)cos^...

    Text Solution

    |

  15. If y=3cos(logx)+4sin(logx),\ then show that x^2dot(d^2\ y)/(dx^2)+...

    Text Solution

    |

  16. If y= cos ec x -cot x ,then sin x (d^(2)y)/(dx^(2))=

    Text Solution

    |

  17. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  18. If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

    Text Solution

    |

  19. If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

    Text Solution

    |

  20. If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)...

    Text Solution

    |