Home
Class 12
MATHS
If y=e^(x) sin 3x ,then (d^(2)y)/(dx^(2)...

If `y=e^(x) sin 3x ,then (d^(2)y)/(dx^(2))=`

A

`e^(x) (8sin 3x - 6cos 3x )`

B

`e^(x) ( 6cos 3x- 8sin 3x )`

C

`e^(x) (3sin 3x - 4cos 3x )

D

`e^(x) ( 3cos 3x- 4sin 3x )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = e^x \sin(3x) \) and find the second derivative \( \frac{d^2y}{dx^2} \), we will follow these steps: ### Step 1: First Derivative We will apply the product rule of differentiation, which states that if \( y = u \cdot v \), then \( \frac{dy}{dx} = u'v + uv' \). Here, let: - \( u = e^x \) and \( v = \sin(3x) \) Now, we differentiate \( u \) and \( v \): - \( u' = \frac{d}{dx}(e^x) = e^x \) - \( v' = \frac{d}{dx}(\sin(3x)) = 3\cos(3x) \) (using the chain rule) Now, applying the product rule: \[ \frac{dy}{dx} = u'v + uv' = e^x \sin(3x) + e^x (3\cos(3x)) \] \[ \frac{dy}{dx} = e^x \sin(3x) + 3e^x \cos(3x) \] \[ \frac{dy}{dx} = e^x (\sin(3x) + 3\cos(3x)) \] ### Step 2: Second Derivative Now we need to differentiate \( \frac{dy}{dx} \) again to find \( \frac{d^2y}{dx^2} \). Using the product rule again: Let \( u = e^x \) and \( v = \sin(3x) + 3\cos(3x) \). Now, we differentiate \( v \): - \( v' = \frac{d}{dx}(\sin(3x) + 3\cos(3x)) = 3\cos(3x) - 9\sin(3x) \) Now, applying the product rule: \[ \frac{d^2y}{dx^2} = u'v + uv' = e^x (\sin(3x) + 3\cos(3x)) + e^x (3\cos(3x) - 9\sin(3x)) \] \[ \frac{d^2y}{dx^2} = e^x (\sin(3x) + 3\cos(3x) + 3\cos(3x) - 9\sin(3x)) \] \[ \frac{d^2y}{dx^2} = e^x ((1 - 9)\sin(3x) + (3 + 3)\cos(3x)) \] \[ \frac{d^2y}{dx^2} = e^x (-8\sin(3x) + 6\cos(3x)) \] ### Final Answer Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = e^x (6\cos(3x) - 8\sin(3x)) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y=e^(4x) sin 3x , find (d^(2)y)/(dx^(2)).

If y=cos2x*sin3x," then "(d^(2)y)/(dx^(2))=

If y = sin x, then (d^(2)y)/(dx^(2))=

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

If y=x^(m)e^(nx) then (d^(2)y)/(dx^(2)) is

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-

if y=e^(2x)sin3x then find (dy)/(dx)

If y=e^(-x)cos x, show that (d^(2)y)/(dx^(2))=2e^(-1)sin x

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y= x^(2) (sin x+cos x) ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  2. If y=x log x ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  3. If y=e^(x) sin 3x ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  4. If y= e^(4x) cos 5x ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  5. If y= e^(2x) tan x ,then ( d^(2)y)/(dx^(2))=

    Text Solution

    |

  6. If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

    Text Solution

    |

  7. If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  8. If y = x^(3)log ( log (1+x) ) ,theny''(0) =

    Text Solution

    |

  9. If y={"log"(x+sqrt(x^2+1))}^2,"s h o wt h a t"(1+x^2)(d^2y)/(dx^2)+x(...

    Text Solution

    |

  10. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  11. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  12. (i) If y^(1//m) + y^(-1//m) = 2x then prove that (x^(2)-1) (d^(2)y)/(...

    Text Solution

    |

  13. If y="sin"(sinx),"p r o v et h a t" (d^2y)/(dx^2)+tanx(dy)/(dx)cos^...

    Text Solution

    |

  14. If y=3cos(logx)+4sin(logx),\ then show that x^2dot(d^2\ y)/(dx^2)+...

    Text Solution

    |

  15. If y= cos ec x -cot x ,then sin x (d^(2)y)/(dx^(2))=

    Text Solution

    |

  16. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  17. If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

    Text Solution

    |

  18. If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

    Text Solution

    |

  19. If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)...

    Text Solution

    |

  20. If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)...

    Text Solution

    |