Home
Class 12
MATHS
If y= e^(4x) cos 5x ,then (d^(2)y)/(dx^(...

If `y= e^(4x) cos 5x ,then (d^(2)y)/(dx^(2))=`

A

` -e^(4x) (9cos 5x +20 sin 5x )`

B

` e^(4x) (9cos 5x+ 20sin 5x)`

C

`- e^(4x) (9cos 5x+ 40sin 5x)`

D

` e^(4x) (9cos 5x+ 40sin 5x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = e^{4x} \cos(5x) \), we will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) We will use the product rule for differentiation, which states that if \( y = u \cdot v \), then \( \frac{dy}{dx} = u'v + uv' \). Let: - \( u = e^{4x} \) and \( v = \cos(5x) \) Now, we differentiate \( u \) and \( v \): - \( u' = \frac{d}{dx}(e^{4x}) = 4e^{4x} \) - \( v' = \frac{d}{dx}(\cos(5x)) = -5\sin(5x) \) Now applying the product rule: \[ \frac{dy}{dx} = u'v + uv' = (4e^{4x})(\cos(5x)) + (e^{4x})(-5\sin(5x)) \] \[ \frac{dy}{dx} = 4e^{4x} \cos(5x) - 5e^{4x} \sin(5x) \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now we need to differentiate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = 4e^{4x} \cos(5x) - 5e^{4x} \sin(5x) \] Using the product rule again on both terms: 1. Differentiate \( 4e^{4x} \cos(5x) \): - Let \( u_1 = 4e^{4x} \) and \( v_1 = \cos(5x) \) - \( u_1' = 16e^{4x} \) - \( v_1' = -5\sin(5x) \) \[ \frac{d}{dx}(4e^{4x} \cos(5x)) = u_1'v_1 + u_1v_1' = (16e^{4x})(\cos(5x)) + (4e^{4x})(-5\sin(5x)) \] \[ = 16e^{4x} \cos(5x) - 20e^{4x} \sin(5x) \] 2. Differentiate \( -5e^{4x} \sin(5x) \): - Let \( u_2 = -5e^{4x} \) and \( v_2 = \sin(5x) \) - \( u_2' = -20e^{4x} \) - \( v_2' = 5\cos(5x) \) \[ \frac{d}{dx}(-5e^{4x} \sin(5x)) = u_2'v_2 + u_2v_2' = (-20e^{4x})(\sin(5x)) + (-5e^{4x})(5\cos(5x)) \] \[ = -20e^{4x} \sin(5x) - 25e^{4x} \cos(5x) \] ### Step 3: Combine the results Now we combine the results from both differentiations: \[ \frac{d^2y}{dx^2} = (16e^{4x} \cos(5x) - 20e^{4x} \sin(5x)) + (-20e^{4x} \sin(5x) - 25e^{4x} \cos(5x)) \] Combining like terms: \[ = (16e^{4x} - 25e^{4x}) \cos(5x) + (-20e^{4x} - 20e^{4x}) \sin(5x) \] \[ = -9e^{4x} \cos(5x) - 40e^{4x} \sin(5x) \] ### Final Answer Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = -e^{4x}(9 \cos(5x) + 40 \sin(5x)) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y=e^(4x) sin 3x , find (d^(2)y)/(dx^(2)).

If y=e^(-x)cos x, show that (d^(2)y)/(dx^(2))=2e^(-1)sin x

If y=e^(x)cos x, prove that (d^(2)y)/(dx^(2))=2e^(x)cos(x+(pi)/(2))

If y=e^(x)cos x, prove that t(d^(2)y)/(dx^(2))=2e^(x)cos(x+(pi)/(2))

If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

If y=sin3x cos5x, then (d^(2)y)/(dx^(2))=?

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=x log x ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  2. If y=e^(x) sin 3x ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  3. If y= e^(4x) cos 5x ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  4. If y= e^(2x) tan x ,then ( d^(2)y)/(dx^(2))=

    Text Solution

    |

  5. If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

    Text Solution

    |

  6. If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  7. If y = x^(3)log ( log (1+x) ) ,theny''(0) =

    Text Solution

    |

  8. If y={"log"(x+sqrt(x^2+1))}^2,"s h o wt h a t"(1+x^2)(d^2y)/(dx^2)+x(...

    Text Solution

    |

  9. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  10. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  11. (i) If y^(1//m) + y^(-1//m) = 2x then prove that (x^(2)-1) (d^(2)y)/(...

    Text Solution

    |

  12. If y="sin"(sinx),"p r o v et h a t" (d^2y)/(dx^2)+tanx(dy)/(dx)cos^...

    Text Solution

    |

  13. If y=3cos(logx)+4sin(logx),\ then show that x^2dot(d^2\ y)/(dx^2)+...

    Text Solution

    |

  14. If y= cos ec x -cot x ,then sin x (d^(2)y)/(dx^(2))=

    Text Solution

    |

  15. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  16. If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

    Text Solution

    |

  17. If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

    Text Solution

    |

  18. If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)...

    Text Solution

    |

  19. If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)...

    Text Solution

    |

  20. If y= sin (mlog (x+ sqrt( 1+x^(2)))),then (1+x^(2) ) (d^(2)y)/(dx^(2)...

    Text Solution

    |