Home
Class 12
MATHS
If y=x^(n)log nx.,then (d^(2)y)/(dx^(2)...

If ` y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=`

A

` x^(n-2) (n-1-n (n-1) log nx )`

B

` x^(n-2) (n-1+ n (n-1) log nx )`

C

` x^(n-2) (2n-1- n (n-1) log nx )`

D

` x^(n-2) (2n-1+ n (n-1) log nx )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = x^n \log(nx) \) and find the second derivative \( \frac{d^2y}{dx^2} \), we will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Using the product rule, we have: \[ \frac{dy}{dx} = \frac{d}{dx}(x^n) \cdot \log(nx) + x^n \cdot \frac{d}{dx}(\log(nx)) \] Calculating each part: 1. The derivative of \( x^n \) is \( nx^{n-1} \). 2. The derivative of \( \log(nx) \) using the chain rule is \( \frac{1}{nx} \cdot n = \frac{1}{x} \). Putting it all together: \[ \frac{dy}{dx} = x^n \cdot \frac{1}{x} + \log(nx) \cdot nx^{n-1} = x^{n-1} + nx^{n-1} \log(nx) \] Now, we can factor out \( x^{n-1} \): \[ \frac{dy}{dx} = x^{n-1} \left( 1 + n \log(nx) \right) \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left( x^{n-1} \left( 1 + n \log(nx) \right) \right) \] Using the product rule again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(x^{n-1}) \cdot \left( 1 + n \log(nx) \right) + x^{n-1} \cdot \frac{d}{dx}\left(1 + n \log(nx)\right) \] Calculating each part: 1. The derivative of \( x^{n-1} \) is \( (n-1)x^{n-2} \). 2. The derivative of \( 1 + n \log(nx) \) is \( n \cdot \frac{1}{x} = \frac{n}{x} \). Putting it all together: \[ \frac{d^2y}{dx^2} = (n-1)x^{n-2} \left( 1 + n \log(nx) \right) + x^{n-1} \cdot \frac{n}{x} \] This simplifies to: \[ \frac{d^2y}{dx^2} = (n-1)x^{n-2} \left( 1 + n \log(nx) \right) + n x^{n-2} \] Now, we can combine the terms: \[ \frac{d^2y}{dx^2} = x^{n-2} \left( (n-1)(1 + n \log(nx)) + n \right) \] Expanding this gives: \[ \frac{d^2y}{dx^2} = x^{n-2} \left( n + n(n-1) \log(nx) \right) \] ### Final Result Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = x^{n-2} \left( 2n - 1 + n(n-1) \log(nx) \right) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y=x log x ,then (d^(2)y)/(dx^(2))=

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y=x^(m)e^(nx) then (d^(2)y)/(dx^(2)) is

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=e^(nx) then (d^(2)y)/(dx^(2)) is

If y=log(sinx)," then "(d^(2)y)/(dx^(2)) equals

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y= e^(2x) tan x ,then ( d^(2)y)/(dx^(2))=

    Text Solution

    |

  2. If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

    Text Solution

    |

  3. If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  4. If y = x^(3)log ( log (1+x) ) ,theny''(0) =

    Text Solution

    |

  5. If y={"log"(x+sqrt(x^2+1))}^2,"s h o wt h a t"(1+x^2)(d^2y)/(dx^2)+x(...

    Text Solution

    |

  6. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  7. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  8. (i) If y^(1//m) + y^(-1//m) = 2x then prove that (x^(2)-1) (d^(2)y)/(...

    Text Solution

    |

  9. If y="sin"(sinx),"p r o v et h a t" (d^2y)/(dx^2)+tanx(dy)/(dx)cos^...

    Text Solution

    |

  10. If y=3cos(logx)+4sin(logx),\ then show that x^2dot(d^2\ y)/(dx^2)+...

    Text Solution

    |

  11. If y= cos ec x -cot x ,then sin x (d^(2)y)/(dx^(2))=

    Text Solution

    |

  12. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  13. If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

    Text Solution

    |

  14. If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

    Text Solution

    |

  15. If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)...

    Text Solution

    |

  16. If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)...

    Text Solution

    |

  17. If y= sin (mlog (x+ sqrt( 1+x^(2)))),then (1+x^(2) ) (d^(2)y)/(dx^(2)...

    Text Solution

    |

  18. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |

  19. If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

    Text Solution

    |

  20. If u=A e ^(mx) +Be^(nx ) ,then y2-( m+n) y1+ mn y=

    Text Solution

    |