Home
Class 12
MATHS
If y=cos (log x) ,then " "x^(2) (d^(2)y...

If ` y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=`

A

0

B

1

C

y

D

`-y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} \) given that \( y = \cos(\log x) \). ### Step 1: Find \( \frac{dy}{dx} \) Given: \[ y = \cos(\log x) \] Using the chain rule: \[ \frac{dy}{dx} = -\sin(\log x) \cdot \frac{d}{dx}(\log x) \] Since \( \frac{d}{dx}(\log x) = \frac{1}{x} \), we have: \[ \frac{dy}{dx} = -\sin(\log x) \cdot \frac{1}{x} = -\frac{\sin(\log x)}{x} \] ### Step 2: Find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{\sin(\log x)}{x}\right) \] Using the product rule: \[ \frac{d^2y}{dx^2} = -\left(\frac{d}{dx}(\sin(\log x)) \cdot \frac{1}{x} + \sin(\log x) \cdot \frac{d}{dx}\left(\frac{1}{x}\right)\right) \] Calculating \( \frac{d}{dx}(\sin(\log x)) \): \[ \frac{d}{dx}(\sin(\log x)) = \cos(\log x) \cdot \frac{1}{x} \] And \( \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2} \). Therefore: \[ \frac{d^2y}{dx^2} = -\left(\cos(\log x) \cdot \frac{1}{x} \cdot \frac{1}{x} - \sin(\log x) \cdot \frac{1}{x^2}\right) \] \[ = -\left(\frac{\cos(\log x)}{x^2} - \frac{\sin(\log x)}{x^2}\right) \] \[ = -\frac{\cos(\log x) - \sin(\log x)}{x^2} \] ### Step 3: Substitute into the expression Now we substitute \( \frac{d^2y}{dx^2} \) and \( \frac{dy}{dx} \) into the expression \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} \): \[ x^2 \frac{d^2y}{dx^2} = x^2 \left(-\frac{\cos(\log x) - \sin(\log x)}{x^2}\right) = -(\cos(\log x) - \sin(\log x)) \] And: \[ x \frac{dy}{dx} = x \left(-\frac{\sin(\log x)}{x}\right) = -\sin(\log x) \] Combining these: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -(\cos(\log x) - \sin(\log x)) - \sin(\log x) \] \[ = -\cos(\log x) \] ### Step 4: Final expression Since \( y = \cos(\log x) \), we can express the final result as: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -y \] ### Conclusion Thus, the final answer is: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -y \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y =3 cos (log x) + 4 sin (log x), then x ^(2) (d ^(2) y )/( dx ^(2)) + x (dy)/(dx) =

If y = a cos (ln x)+ b sin (ln x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)=

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y= cos ec x -cot x ,then sin x (d^(2)y)/(dx^(2))=

    Text Solution

    |

  2. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  3. If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

    Text Solution

    |

  4. If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

    Text Solution

    |

  5. If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)...

    Text Solution

    |

  6. If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)...

    Text Solution

    |

  7. If y= sin (mlog (x+ sqrt( 1+x^(2)))),then (1+x^(2) ) (d^(2)y)/(dx^(2)...

    Text Solution

    |

  8. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |

  9. If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

    Text Solution

    |

  10. If u=A e ^(mx) +Be^(nx ) ,then y2-( m+n) y1+ mn y=

    Text Solution

    |

  11. If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)...

    Text Solution

    |

  12. If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

    Text Solution

    |

  13. If e^(y) (x+1) =1,then y2=

    Text Solution

    |

  14. (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  15. "If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  16. If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

    Text Solution

    |

  17. If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

    Text Solution

    |

  18. If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y2+2x\ (1+x^2)y1=2 .

    Text Solution

    |

  19. If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

    Text Solution

    |

  20. If x=at^2, y=2at then (d^2y)/dx^2 is equal to

    Text Solution

    |