Home
Class 12
MATHS
If y=sin (msin ^(-1) x),then (1-x^(2))(...

If ` y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=`

A

` -2m ^(2)y`

B

` 2m^(2)y`

C

` -m^(2) y`

D

` m^(2)y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given function: \[ y = \sin(m \sin^{-1}(x)) \] ### Step 1: Differentiate \( y \) with respect to \( x \) Using the chain rule, we differentiate \( y \): \[ \frac{dy}{dx} = \cos(m \sin^{-1}(x)) \cdot \frac{d}{dx}(m \sin^{-1}(x)) \] The derivative of \( \sin^{-1}(x) \) is: \[ \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1 - x^2}} \] Thus, we have: \[ \frac{dy}{dx} = \cos(m \sin^{-1}(x)) \cdot \frac{m}{\sqrt{1 - x^2}} \] ### Step 2: Express \( \cos(m \sin^{-1}(x)) \) Using the identity \( \cos(\sin^{-1}(x)) = \sqrt{1 - x^2} \), we can express \( \cos(m \sin^{-1}(x)) \): \[ \cos(m \sin^{-1}(x)) = \sqrt{1 - \sin^2(m \sin^{-1}(x))} = \sqrt{1 - x^2} \] Thus, \[ \frac{dy}{dx} = \sqrt{1 - x^2} \cdot \frac{m}{\sqrt{1 - x^2}} = m \] ### Step 3: Differentiate \( \frac{dy}{dx} \) again to find \( \frac{d^2y}{dx^2} \) Since \( \frac{dy}{dx} = m \) is a constant, we have: \[ \frac{d^2y}{dx^2} = 0 \] ### Step 4: Substitute into the original expression Now we substitute \( \frac{d^2y}{dx^2} \) and \( \frac{dy}{dx} \) into the expression: \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} \] Substituting the values we found: \[ (1 - x^2)(0) - x(m) = -mx \] ### Final Result Thus, the expression simplifies to: \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = -mx \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)=

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=

If y=sin^(-1)x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+m^(2)y=0

If y=(sin^(-1)x)^(2),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=2

If y=e^(m)sin^((-1)x), prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-m^(2)y=0

If y=e^(m sin^(-1)x) prove that (1-x^(2))((d^(2)y)/(dx^(2)))-x(dy)/(dx)=m^(2)y

If y=sin^(-1)x show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  2. If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

    Text Solution

    |

  3. If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

    Text Solution

    |

  4. If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)...

    Text Solution

    |

  5. If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)...

    Text Solution

    |

  6. If y= sin (mlog (x+ sqrt( 1+x^(2)))),then (1+x^(2) ) (d^(2)y)/(dx^(2)...

    Text Solution

    |

  7. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |

  8. If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

    Text Solution

    |

  9. If u=A e ^(mx) +Be^(nx ) ,then y2-( m+n) y1+ mn y=

    Text Solution

    |

  10. If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)...

    Text Solution

    |

  11. If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

    Text Solution

    |

  12. If e^(y) (x+1) =1,then y2=

    Text Solution

    |

  13. (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  14. "If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  15. If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

    Text Solution

    |

  16. If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

    Text Solution

    |

  17. If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y2+2x\ (1+x^2)y1=2 .

    Text Solution

    |

  18. If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

    Text Solution

    |

  19. If x=at^2, y=2at then (d^2y)/dx^2 is equal to

    Text Solution

    |

  20. If x=2at ^(2),y =4at ,then (d^(2)y)/(dx^(2) )=

    Text Solution

    |