Home
Class 12
MATHS
If y=a cos ( log x )+ bsin (log x) wher...

If ` y=a cos ( log x )+ bsin (log x) where a ,b are ` parameters ,then ` x^(2) y''+ xy '=`

A

` -2y `

B

` 2y `

C

` -y`

D

` y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x^2 y'' + x y' \) where \( y = a \cos(\log x) + b \sin(\log x) \), we will follow these steps: ### Step 1: Find \( y' \) Given: \[ y = a \cos(\log x) + b \sin(\log x) \] Using the chain rule for differentiation: \[ y' = \frac{dy}{dx} = \frac{d}{dx}[a \cos(\log x)] + \frac{d}{dx}[b \sin(\log x)] \] Calculating each derivative: 1. For \( a \cos(\log x) \): \[ \frac{d}{dx}[a \cos(\log x)] = -a \sin(\log x) \cdot \frac{d}{dx}[\log x] = -a \sin(\log x) \cdot \frac{1}{x} \] 2. For \( b \sin(\log x) \): \[ \frac{d}{dx}[b \sin(\log x)] = b \cos(\log x) \cdot \frac{d}{dx}[\log x] = b \cos(\log x) \cdot \frac{1}{x} \] Combining these results: \[ y' = -\frac{a \sin(\log x)}{x} + \frac{b \cos(\log x)}{x} \] Thus, \[ y' = \frac{b \cos(\log x) - a \sin(\log x)}{x} \] ### Step 2: Find \( y'' \) Now we differentiate \( y' \): \[ y' = \frac{b \cos(\log x) - a \sin(\log x)}{x} \] Using the quotient rule: \[ y'' = \frac{d}{dx}\left(\frac{b \cos(\log x) - a \sin(\log x)}{x}\right) \] Let \( u = b \cos(\log x) - a \sin(\log x) \) and \( v = x \). Using the quotient rule: \[ y'' = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} \): 1. For \( b \cos(\log x) \): \[ \frac{d}{dx}[b \cos(\log x)] = -b \sin(\log x) \cdot \frac{1}{x} \] 2. For \( -a \sin(\log x) \): \[ \frac{d}{dx}[-a \sin(\log x)] = -a \cos(\log x) \cdot \frac{1}{x} \] Combining these: \[ \frac{du}{dx} = -\frac{b \sin(\log x)}{x} - \frac{a \cos(\log x)}{x} \] Thus, \[ \frac{du}{dx} = -\frac{b \sin(\log x) + a \cos(\log x)}{x} \] Now substituting back into the quotient rule: \[ y'' = \frac{x \left(-\frac{b \sin(\log x) + a \cos(\log x)}{x}\right) - (b \cos(\log x) - a \sin(\log x)) \cdot 1}{x^2} \] This simplifies to: \[ y'' = \frac{-b \sin(\log x) - a \cos(\log x) - b \cos(\log x) + a \sin(\log x)}{x^2} \] Thus, \[ y'' = \frac{(a - b) \sin(\log x) - (a + b) \cos(\log x)}{x^2} \] ### Step 3: Calculate \( x^2 y'' + x y' \) Now we substitute \( y' \) and \( y'' \) into the expression: \[ x^2 y'' + x y' = x^2 \left(\frac{(a - b) \sin(\log x) - (a + b) \cos(\log x)}{x^2}\right) + x \left(\frac{b \cos(\log x) - a \sin(\log x)}{x}\right) \] This simplifies to: \[ (a - b) \sin(\log x) - (a + b) \cos(\log x) + (b \cos(\log x) - a \sin(\log x)) \] Combining like terms: \[ = (a - b - a) \sin(\log x) + (b - (a + b)) \cos(\log x) \] \[ = -b \sin(\log x) - a \cos(\log x) \] ### Final Result Thus, the expression simplifies to: \[ = - (a \cos(\log x) + b \sin(\log x)) = -y \] ### Conclusion The final result is: \[ x^2 y'' + x y' = -y \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

y = A cos (log x) + B sin (log x)

If y = a cos (log x) -b sin (log x), thenx ^ (2) y_ (2) + xy_ (1) + y =

If y =3 cos (log x) + 4 sin (log x), then x ^(2) (d ^(2) y )/( dx ^(2)) + x (dy)/(dx) =

if y=a sin (log x) + b cos (log x ) , then the differential equation without the parameter a and b is

If y=3cos(log x)+4sin(log x), prove that x^(2)y_(2)+xy_(1)+y=0

Show that y=a cos(log x)+b sin(log x) is a solution of the differential equation x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=A cos(log x)+B sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y = a cos (ln x)+ b sin (ln x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=

If log (x+y) =log (xy ) +a, then (dy)/(dx) =

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)...

    Text Solution

    |

  2. If y= sin (mlog (x+ sqrt( 1+x^(2)))),then (1+x^(2) ) (d^(2)y)/(dx^(2)...

    Text Solution

    |

  3. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |

  4. If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

    Text Solution

    |

  5. If u=A e ^(mx) +Be^(nx ) ,then y2-( m+n) y1+ mn y=

    Text Solution

    |

  6. If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)...

    Text Solution

    |

  7. If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

    Text Solution

    |

  8. If e^(y) (x+1) =1,then y2=

    Text Solution

    |

  9. (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  10. "If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  11. If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

    Text Solution

    |

  12. If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

    Text Solution

    |

  13. If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y2+2x\ (1+x^2)y1=2 .

    Text Solution

    |

  14. If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

    Text Solution

    |

  15. If x=at^2, y=2at then (d^2y)/dx^2 is equal to

    Text Solution

    |

  16. If x=2at ^(2),y =4at ,then (d^(2)y)/(dx^(2) )=

    Text Solution

    |

  17. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  18. If x= a sec theta ,y =a tan theta ,then " at " theta = (pi)/(4) ,(d^(...

    Text Solution

    |

  19. If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = ...

    Text Solution

    |

  20. If x=costheta,ysin^3theta,"p r o v et h a t" y(d^2y)/(dx^2)+((dy)/(...

    Text Solution

    |