Home
Class 12
MATHS
If u=A e ^(mx) +Be^(nx ) ,then y2-( m+n...

If ` u=A e ^(mx) +Be^(nx ) ,then y_2-( m+n) y_1+ mn y=`

A

m

B

n

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given function: \[ u = A e^{mx} + B e^{nx} \] We need to find \( y_2 - (m+n) y_1 + mn y \), where \( y = u \), \( y_1 = \frac{dy}{dx} \), and \( y_2 = \frac{d^2y}{dx^2} \). ### Step 1: Calculate \( y_1 \) First, we differentiate \( u \) with respect to \( x \): \[ y_1 = \frac{du}{dx} = \frac{d}{dx}(A e^{mx} + B e^{nx}) \] Using the chain rule, we get: \[ y_1 = A m e^{mx} + B n e^{nx} \] ### Step 2: Calculate \( y_2 \) Next, we differentiate \( y_1 \) to find \( y_2 \): \[ y_2 = \frac{d^2u}{dx^2} = \frac{d}{dx}(A m e^{mx} + B n e^{nx}) \] Again using the chain rule, we get: \[ y_2 = A m^2 e^{mx} + B n^2 e^{nx} \] ### Step 3: Substitute \( y_1 \), \( y_2 \), and \( y \) into the expression Now we substitute \( y_1 \), \( y_2 \), and \( y \) into the expression \( y_2 - (m+n) y_1 + mn y \): \[ y_2 - (m+n) y_1 + mn y = (A m^2 e^{mx} + B n^2 e^{nx}) - (m+n)(A m e^{mx} + B n e^{nx}) + mn(A e^{mx} + B e^{nx}) \] ### Step 4: Expand the expression Expanding the expression gives: \[ = A m^2 e^{mx} + B n^2 e^{nx} - (m+n)(A m e^{mx}) - (m+n)(B n e^{nx}) + mn(A e^{mx}) + mn(B e^{nx}) \] ### Step 5: Group like terms Grouping the terms for \( e^{mx} \) and \( e^{nx} \): For \( e^{mx} \): \[ A m^2 e^{mx} - (m+n) A m e^{mx} + mn A e^{mx} \] Factoring out \( A e^{mx} \): \[ A e^{mx} (m^2 - (m+n)m + mn) \] For \( e^{nx} \): \[ B n^2 e^{nx} - (m+n) B n e^{nx} + mn B e^{nx} \] Factoring out \( B e^{nx} \): \[ B e^{nx} (n^2 - (m+n)n + mn) \] ### Step 6: Simplify the expressions Now we simplify both expressions: 1. For \( A e^{mx} \): \[ m^2 - (m^2 + mn) + mn = 0 \] 2. For \( B e^{nx} \): \[ n^2 - (mn + n^2) + mn = 0 \] Thus, both expressions simplify to zero: \[ A e^{mx} (0) + B e^{nx} (0) = 0 \] ### Final Result Therefore, we conclude: \[ y_2 - (m+n) y_1 + mn y = 0 \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y=x^(m)e^(nx) then (d^(2)y)/(dx^(2)) is

If y= Ae^(mx) + Be^(-mx) , show that (d^2y)/dx^2-m^2y=0 .

If y=Ae^(mx)+Be^(nx) ,then (d^(2)y)/(dx^(2)) is equal to , (a) (m+n)(dy)/(dx)+mny , (b) (m+n)(dy)/(dx)-mny , (c) -(m+n)(dy)/(dx)+mny , (d) None of these

If y=A e^(m x)+B e^(n x) , show that (d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

If y=Ae^(mx)+Be^(nx), show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

If y=Ae^(mx)+Be^(nx), show that (d^(2)y)/(dx^(2))-((m+n)dy)/(dx)+mny=0

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y=mx+1 and y^(2)=4x+1 then m=

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |

  2. If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

    Text Solution

    |

  3. If u=A e ^(mx) +Be^(nx ) ,then y2-( m+n) y1+ mn y=

    Text Solution

    |

  4. If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)...

    Text Solution

    |

  5. If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

    Text Solution

    |

  6. If e^(y) (x+1) =1,then y2=

    Text Solution

    |

  7. (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  8. "If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  9. If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

    Text Solution

    |

  10. If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

    Text Solution

    |

  11. If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y2+2x\ (1+x^2)y1=2 .

    Text Solution

    |

  12. If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

    Text Solution

    |

  13. If x=at^2, y=2at then (d^2y)/dx^2 is equal to

    Text Solution

    |

  14. If x=2at ^(2),y =4at ,then (d^(2)y)/(dx^(2) )=

    Text Solution

    |

  15. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  16. If x= a sec theta ,y =a tan theta ,then " at " theta = (pi)/(4) ,(d^(...

    Text Solution

    |

  17. If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = ...

    Text Solution

    |

  18. If x=costheta,ysin^3theta,"p r o v et h a t" y(d^2y)/(dx^2)+((dy)/(...

    Text Solution

    |

  19. If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(...

    Text Solution

    |

  20. If x=a sin theta ,y =bcos theta,then (d^(2)y)/(dx^(2))=

    Text Solution

    |