Home
Class 12
MATHS
If y= e ^(mcos ^(-1)x) ,then (1-x^(2) )...

If ` y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=`

A

` -m^(2)y`

B

` m^(2)y`

C

` -2m ^(2) y`

D

` 2m ^(2) y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \((1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx}\) given \(y = e^{m \cos^{-1}(x)}\). ### Step 1: Differentiate \(y\) with respect to \(x\) Given: \[ y = e^{m \cos^{-1}(x)} \] Using the chain rule: \[ \frac{dy}{dx} = e^{m \cos^{-1}(x)} \cdot \frac{d}{dx}(m \cos^{-1}(x)) \] We know that: \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1-x^2}} \] Thus: \[ \frac{dy}{dx} = e^{m \cos^{-1}(x)} \cdot \left(-\frac{m}{\sqrt{1-x^2}}\right) \] \[ \frac{dy}{dx} = -\frac{m e^{m \cos^{-1}(x)}}{\sqrt{1-x^2}} \] Let \(y = e^{m \cos^{-1}(x)}\), then: \[ \frac{dy}{dx} = -\frac{m y}{\sqrt{1-x^2}} \] ### Step 2: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{m y}{\sqrt{1-x^2}}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = -m \left(\frac{\sqrt{1-x^2} \frac{dy}{dx} + y \frac{d}{dx}(\sqrt{1-x^2})}{1-x^2}\right) \] Now, \(\frac{d}{dx}(\sqrt{1-x^2}) = \frac{-x}{\sqrt{1-x^2}}\). Thus: \[ \frac{d^2y}{dx^2} = -m \left(\frac{\sqrt{1-x^2} \left(-\frac{m y}{\sqrt{1-x^2}}\right) + y \left(\frac{-x}{\sqrt{1-x^2}}\right)}{1-x^2}\right) \] \[ = -m \left(\frac{-m y + -xy}{1-x^2}\right) \] \[ = \frac{m^2 y + mx y}{(1-x^2)} \] ### Step 3: Substitute into the expression \((1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx}\) Now we substitute \(\frac{d^2y}{dx^2}\) and \(\frac{dy}{dx}\) into the expression: \[ (1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = (1-x^2) \left(\frac{m^2 y + mx y}{1-x^2}\right) - x \left(-\frac{m y}{\sqrt{1-x^2}}\right) \] Simplifying: \[ = m^2 y + mx y + \frac{mx y}{\sqrt{1-x^2}} \] ### Final Expression Thus, the final expression is: \[ m^2 y + mx y + \frac{mx y}{\sqrt{1-x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)=

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y=e^(m sin^(-1)x) prove that (1-x^(2))((d^(2)y)/(dx^(2)))-x(dy)/(dx)=m^(2)y

If y=(sin^(-1)x)^(2),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=2

If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+m^(2)y=0

If y=e^(m)sin^((-1)x), prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-m^(2)y=0

If y=cos(mcos^(-1)x) , then prove that : (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx+m^(2)y=0 .

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=e^(a cos^(-1)x),-1<=x<1, show that(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

    Text Solution

    |

  2. If u=A e ^(mx) +Be^(nx ) ,then y2-( m+n) y1+ mn y=

    Text Solution

    |

  3. If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)...

    Text Solution

    |

  4. If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

    Text Solution

    |

  5. If e^(y) (x+1) =1,then y2=

    Text Solution

    |

  6. (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  7. "If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  8. If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

    Text Solution

    |

  9. If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

    Text Solution

    |

  10. If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y2+2x\ (1+x^2)y1=2 .

    Text Solution

    |

  11. If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

    Text Solution

    |

  12. If x=at^2, y=2at then (d^2y)/dx^2 is equal to

    Text Solution

    |

  13. If x=2at ^(2),y =4at ,then (d^(2)y)/(dx^(2) )=

    Text Solution

    |

  14. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  15. If x= a sec theta ,y =a tan theta ,then " at " theta = (pi)/(4) ,(d^(...

    Text Solution

    |

  16. If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = ...

    Text Solution

    |

  17. If x=costheta,ysin^3theta,"p r o v et h a t" y(d^2y)/(dx^2)+((dy)/(...

    Text Solution

    |

  18. If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(...

    Text Solution

    |

  19. If x=a sin theta ,y =bcos theta,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  20. If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t, then the value of ...

    Text Solution

    |