Home
Class 12
MATHS
If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(...

If ` y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =`

A

` (x+1) e^(x)`

B

` -(x+1) e^(x) `

C

` 2(x+1) e^(x)`

D

` -2( x+1) e^(x) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = x^2 e^x \), we need to find the second derivative \( \frac{d^2y}{dx^2} \) and the first derivative \( \frac{dy}{dx} \), and then compute \( \frac{d^2y}{dx^2} - \frac{dy}{dx} \). ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Using the product rule, which states that if \( u = x^2 \) and \( v = e^x \), then: \[ \frac{dy}{dx} = u'v + uv' \] where \( u' = \frac{d}{dx}(x^2) = 2x \) and \( v' = \frac{d}{dx}(e^x) = e^x \). Thus, we have: \[ \frac{dy}{dx} = (2x)(e^x) + (x^2)(e^x) = e^x(2x + x^2) \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(e^x(2x + x^2)) \] Using the product rule again, let \( u = e^x \) and \( v = 2x + x^2 \): \[ \frac{d^2y}{dx^2} = u'v + uv' \] Here, \( u' = e^x \) and \( v' = \frac{d}{dx}(2x + x^2) = 2 + 2x \). So we have: \[ \frac{d^2y}{dx^2} = e^x(2x + x^2) + e^x(2 + 2x) = e^x((2x + x^2) + (2 + 2x)) = e^x(x^2 + 4x + 2) \] ### Step 3: Compute \( \frac{d^2y}{dx^2} - \frac{dy}{dx} \) Now, we subtract \( \frac{dy}{dx} \) from \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} - \frac{dy}{dx} = e^x(x^2 + 4x + 2) - e^x(2x + x^2) \] Factoring out \( e^x \): \[ = e^x \left((x^2 + 4x + 2) - (2x + x^2)\right) \] Simplifying the expression inside the parentheses: \[ = e^x \left(x^2 + 4x + 2 - 2x - x^2\right) = e^x(2x + 2) \] Thus, we can factor out a 2: \[ = 2e^x(x + 1) \] ### Final Answer: \[ \frac{d^2y}{dx^2} - \frac{dy}{dx} = 2e^x(x + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y=ae^(2x)+be^(-x), show that (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If u=A e ^(mx) +Be^(nx ) ,then y2-( m+n) y1+ mn y=

    Text Solution

    |

  2. If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)...

    Text Solution

    |

  3. If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

    Text Solution

    |

  4. If e^(y) (x+1) =1,then y2=

    Text Solution

    |

  5. (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  6. "If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  7. If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

    Text Solution

    |

  8. If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

    Text Solution

    |

  9. If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y2+2x\ (1+x^2)y1=2 .

    Text Solution

    |

  10. If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

    Text Solution

    |

  11. If x=at^2, y=2at then (d^2y)/dx^2 is equal to

    Text Solution

    |

  12. If x=2at ^(2),y =4at ,then (d^(2)y)/(dx^(2) )=

    Text Solution

    |

  13. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  14. If x= a sec theta ,y =a tan theta ,then " at " theta = (pi)/(4) ,(d^(...

    Text Solution

    |

  15. If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = ...

    Text Solution

    |

  16. If x=costheta,ysin^3theta,"p r o v et h a t" y(d^2y)/(dx^2)+((dy)/(...

    Text Solution

    |

  17. If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(...

    Text Solution

    |

  18. If x=a sin theta ,y =bcos theta,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  19. If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t, then the value of ...

    Text Solution

    |

  20. If x= asin t- b cos t ,y=a cost +bsin t,then y^(3) (d^(2) y)/(dx^(2) ...

    Text Solution

    |