Home
Class 12
MATHS
If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x...

If ` y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=`

A

` -y^(2)`

B

` y^(2)`

C

` -xy^(2)`

D

`xy^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( xy \frac{d^2y}{dx^2} - x \left( \frac{dy}{dx} \right)^2 \) given that \( y = x^x \). ### Step-by-Step Solution: 1. **Define the function**: \[ y = x^x \] 2. **Take the logarithm of both sides**: \[ \log y = \log(x^x) = x \log x \] 3. **Differentiate both sides with respect to \( x \)**: Using implicit differentiation: \[ \frac{1}{y} \frac{dy}{dx} = \log x + 1 \] Therefore, \[ \frac{dy}{dx} = y(\log x + 1) \] 4. **Substitute \( y \) back**: Since \( y = x^x \): \[ \frac{dy}{dx} = x^x (\log x + 1) \] 5. **Differentiate again to find \( \frac{d^2y}{dx^2} \)**: We apply the product rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( x^x (\log x + 1) \right) \] Let \( u = x^x \) and \( v = \log x + 1 \): \[ \frac{d^2y}{dx^2} = \frac{du}{dx} v + u \frac{dv}{dx} \] - First, find \( \frac{du}{dx} \): \[ \frac{du}{dx} = x^x (\log x + 1) \] - Now find \( \frac{dv}{dx} \): \[ \frac{dv}{dx} = \frac{1}{x} \] Putting it all together: \[ \frac{d^2y}{dx^2} = x^x (\log x + 1)(\log x + 1) + x^x \cdot \frac{1}{x} \] Simplifying: \[ \frac{d^2y}{dx^2} = x^x (\log x + 1)^2 + x^{x-1} \] 6. **Substitute \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \) into the expression**: Now we need to compute: \[ xy \frac{d^2y}{dx^2} - x \left( \frac{dy}{dx} \right)^2 \] Substitute \( y = x^x \): \[ xy \frac{d^2y}{dx^2} = x \cdot x^x \left( x^x (\log x + 1)^2 + x^{x-1} \right) \] \[ = x^{x+1} \left( x^x (\log x + 1)^2 + x^{x-1} \right) \] Now for \( x \left( \frac{dy}{dx} \right)^2 \): \[ x \left( \frac{dy}{dx} \right)^2 = x \left( x^x (\log x + 1) \right)^2 = x \cdot x^{2x} (\log x + 1)^2 = x^{2x + 1} (\log x + 1)^2 \] 7. **Combine the two parts**: \[ xy \frac{d^2y}{dx^2} - x \left( \frac{dy}{dx} \right)^2 = x^{x+1} \left( x^x (\log x + 1)^2 + x^{x-1} \right) - x^{2x + 1} (\log x + 1)^2 \] Simplifying: \[ = x^{x+1} x^{x-1} + x^{x+1} x^x (\log x + 1)^2 - x^{2x + 1} (\log x + 1)^2 \] \[ = x^{2x} + x^{2x + 1}(\log x + 1)^2 - x^{2x + 1}(\log x + 1)^2 \] \[ = x^{2x} \] 8. **Final Result**: \[ xy \frac{d^2y}{dx^2} - x \left( \frac{dy}{dx} \right)^2 = x^{2x} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

y^(2)+x^(2)(dy)/(dx)=xy(dy)/(dx)

If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)=

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

x^(2)(dy)/(dx)+y^(2)=xy

If y=sin((log)_e x) , then x^2\ (d^2y)/(dx^2)+x(dy)/(dx) is equal to.......

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

    Text Solution

    |

  2. If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y2+2x\ (1+x^2)y1=2 .

    Text Solution

    |

  3. If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

    Text Solution

    |

  4. If x=at^2, y=2at then (d^2y)/dx^2 is equal to

    Text Solution

    |

  5. If x=2at ^(2),y =4at ,then (d^(2)y)/(dx^(2) )=

    Text Solution

    |

  6. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  7. If x= a sec theta ,y =a tan theta ,then " at " theta = (pi)/(4) ,(d^(...

    Text Solution

    |

  8. If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = ...

    Text Solution

    |

  9. If x=costheta,ysin^3theta,"p r o v et h a t" y(d^2y)/(dx^2)+((dy)/(...

    Text Solution

    |

  10. If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(...

    Text Solution

    |

  11. If x=a sin theta ,y =bcos theta,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  12. If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t, then the value of ...

    Text Solution

    |

  13. If x= asin t- b cos t ,y=a cost +bsin t,then y^(3) (d^(2) y)/(dx^(2) ...

    Text Solution

    |

  14. If x =theta -sin theta ,y=1-cos theta,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  15. if x=a(costheta+thetasintheta) , y=a(sintheta-thetacostheta) then (d^...

    Text Solution

    |

  16. If x= sin sqrtt,y =e^(sqrt( t) ),then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  17. If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)), show that (dy)/(dx)=-...

    Text Solution

    |

  18. The second order derivative of a sin^3 t w.r.t, a cos^3 t at t = pi/4...

    Text Solution

    |

  19. If x=log theta ,theta gt 0and y= (1)/( theta ),then (d^(2) y)/(dx^(2)...

    Text Solution

    |

  20. Let f(x) be a polynomial.Then, the second order derivative of f(e^x) i...

    Text Solution

    |