Home
Class 12
MATHS
int(ax^(-2)+bx^(-1)+c)/(x^(-3))dx=...

`int(ax^(-2)+bx^(-1)+c)/(x^(-3))dx=`

A

`2ax^(2)+3bx^(3)+4cx^(4)+c_(1)`

B

`6ax^(2)+4bx^(3)+3cx^(4)+c_(1)`

C

`a+b+cx^(-2)+c_(1)`

D

`(ax^(2))/(2)+(bx^(3))/(3)+(cx^(4))/(4)+c_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{ax^{-2} + bx^{-1} + c}{x^{-3}} \, dx, \] we can start by simplifying the integrand. ### Step 1: Rewrite the integrand We can rewrite the expression by dividing each term in the numerator by \(x^{-3}\): \[ \frac{ax^{-2}}{x^{-3}} + \frac{bx^{-1}}{x^{-3}} + \frac{c}{x^{-3}}. \] This simplifies to: \[ ax^{1} + bx^{2} + cx^{3}. \] ### Step 2: Set up the integral Now we can rewrite the integral as: \[ \int (ax + bx^2 + cx^3) \, dx. \] ### Step 3: Integrate term by term We can integrate each term separately: 1. The integral of \(ax\) is \(\frac{a}{2} x^2\). 2. The integral of \(bx^2\) is \(\frac{b}{3} x^3\). 3. The integral of \(cx^3\) is \(\frac{c}{4} x^4\). Putting it all together, we have: \[ \int (ax + bx^2 + cx^3) \, dx = \frac{a}{2} x^2 + \frac{b}{3} x^3 + \frac{c}{4} x^4 + C, \] where \(C\) is the constant of integration. ### Final Result Thus, the final result of the integral is: \[ \frac{a}{2} x^2 + \frac{b}{3} x^3 + \frac{c}{4} x^4 + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(ax^(3)+bx^(2)+c)/(x^(4))dx=

Find int((ax^(2)+bx+c)/(x^(3)))dx

int(ax^(2)+bx+c)^(2)dx

int (ax^(2)+bx+c)dx

int(ax^(2)+bx+c)dx

int(ax^(2)+bx+c)dx

int(ax^(2)+bx+c)dx

Evaluate : int ((ax^(4) + bx^(2) +C)/(x^(4))) " dx "

int(ax^(3)+bx+c)/(x^(2))dx

int(ax^(2)+bx+c)/((x-a)(x-b)(x-c))dx;a,b,c are distinct