Home
Class 12
MATHS
int(root(3)x ^(2)+root(4)x+root(3)x)/(s...

`int(root(3)x ^(2)+root(4)x+root(3)x)/(sqrtx)dx=`

A

`(6x^((7)/(6)))/(7)+(4x^((4)/(3)))/(3)+(6x^((5)/(6)))/(5)+c`

B

`(7x^((7)/(6)))/(6)+(3x^((3)/(4)))/(4)+(5x^((5)/(6)))/(6)+c`

C

`(x^((7)/(6)))/(7)+(x^((3)/(4)))/(3)+(x^((5)/(6)))/(5)+c`

D

`(x^((7)/(6)))/(6)+(x^((3)/(4)))/(4)+(x^((5)/(6)))/(6)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sqrt{3}x^2 + \sqrt{4}x + \sqrt{3}x}{\sqrt{x}} \, dx, \] we can simplify the expression step by step. ### Step 1: Simplify the integrand First, we can combine the terms in the numerator: \[ \sqrt{3}x^2 + \sqrt{4}x + \sqrt{3}x = \sqrt{3}x^2 + 2x + \sqrt{3}x = \sqrt{3}x^2 + (2 + \sqrt{3})x. \] Now, we can rewrite the integral as: \[ \int \frac{\sqrt{3}x^2 + (2 + \sqrt{3})x}{\sqrt{x}} \, dx. \] ### Step 2: Split the integral We can split the integral into two separate integrals: \[ \int \frac{\sqrt{3}x^2}{\sqrt{x}} \, dx + \int \frac{(2 + \sqrt{3})x}{\sqrt{x}} \, dx. \] ### Step 3: Simplify each term Now, simplify each term: 1. For the first term: \[ \frac{\sqrt{3}x^2}{\sqrt{x}} = \sqrt{3}x^{2 - \frac{1}{2}} = \sqrt{3}x^{\frac{3}{2}}. \] 2. For the second term: \[ \frac{(2 + \sqrt{3})x}{\sqrt{x}} = (2 + \sqrt{3})x^{1 - \frac{1}{2}} = (2 + \sqrt{3})x^{\frac{1}{2}}. \] ### Step 4: Rewrite the integral Now, we can rewrite the integral as: \[ \int \sqrt{3}x^{\frac{3}{2}} \, dx + \int (2 + \sqrt{3})x^{\frac{1}{2}} \, dx. \] ### Step 5: Integrate each term Now we can integrate each term separately: 1. For the first term: \[ \int \sqrt{3}x^{\frac{3}{2}} \, dx = \sqrt{3} \cdot \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} = \sqrt{3} \cdot \frac{x^{\frac{5}{2}}}{\frac{5}{2}} = \frac{2\sqrt{3}}{5} x^{\frac{5}{2}}. \] 2. For the second term: \[ \int (2 + \sqrt{3})x^{\frac{1}{2}} \, dx = (2 + \sqrt{3}) \cdot \frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} = (2 + \sqrt{3}) \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2(2 + \sqrt{3})}{3} x^{\frac{3}{2}}. \] ### Step 6: Combine the results Now, combine the results of the integrals: \[ \int \frac{\sqrt{3}x^2 + (2 + \sqrt{3})x}{\sqrt{x}} \, dx = \frac{2\sqrt{3}}{5} x^{\frac{5}{2}} + \frac{2(2 + \sqrt{3})}{3} x^{\frac{3}{2}} + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{\sqrt{3}x^2 + \sqrt{4}x + \sqrt{3}x}{\sqrt{x}} \, dx = \frac{2\sqrt{3}}{5} x^{\frac{5}{2}} + \frac{2(2 + \sqrt{3})}{3} x^{\frac{3}{2}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int root(3)(x^(2))dx

int root(3)(x)dx

int(dx)/(root(3)(x)+root(4)(x))

root(3)(x^(2))+root(3)(x^(2))=3

int(1)/(root(3)(x))

Simplify root(5)(x^(4)root(4)(x^(3)root(3)(x^(2)sqrt(x))))

int root(3)(tan x)*dx

int(root(3)(x))(root(5)(1+root(3)(x^(4))))dx

int(x+root(3)(x^(2))+root(6)(x))/(x(1+root(3)(x)))dx is equal to (i)(3)/(2)x(1+root(3)(x))(3)/(2)x^((2)/(3))+6tan^(-1)x^(6)+C( iii) (3)/(2)x^((2)/(3))+6tan^(-1)x^((1)/(6))+C( iv) (2)/(3)x^((2)/(3))+5tan^(-1)x^(6)+C