Home
Class 12
MATHS
int(sin^(-1)x+cos^(-1)x)dx=...

`int(sin^(-1)x+cos^(-1)x)dx=`

A

`(pix)/(2)+c`

B

`(pix)/(2)+x+c`

C

`x(sin^(-1)x-cos^(-1)x)+c`

D

`x(sin^(-1)x+cos^(-1)x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\sin^{-1} x + \cos^{-1} x) \, dx \), we can follow these steps: ### Step 1: Recognize the relationship between the inverse trigonometric functions We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] This is a fundamental identity for inverse sine and cosine functions. ### Step 2: Substitute the identity into the integral Using the identity from Step 1, we can rewrite the integral: \[ \int (\sin^{-1} x + \cos^{-1} x) \, dx = \int \frac{\pi}{2} \, dx \] ### Step 3: Integrate the constant Now, we can integrate the constant \( \frac{\pi}{2} \): \[ \int \frac{\pi}{2} \, dx = \frac{\pi}{2} x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the solution to the integral is: \[ \int (\sin^{-1} x + \cos^{-1} x) \, dx = \frac{\pi}{2} x + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int e^((sin^(-1)x+cos^(-1)x))dx=

int_(0)^(1){sin^(-1)x+cos^(-1)(1-x)}dx=

Evaluate: (i) int(1)/(sin^(3)x cos^(5)x)dx (ii) int(1)/(sin^(3)x cos x)dx

int cos^(-1)(sin x)dx

Evaluate: int e^((sin^-1 x+cos^-1 x)) dx

Evaluate the following integrals: int(sin^(-1) sqrt(x)+cos^(-1)sqrt(x))dx

int (sin ^ (- 1) x-cos ^ (- 1) x) / (sin ^ (- 1) x + cos ^ (- 1) x) dx =

int sin^(-1)(cos2x)*dx

int sin^(-1)(cos3 x)dx

int(1+sin^(2)x)/(1+cos x)dx