Home
Class 12
MATHS
intcos^(3)x" " dx=...

`intcos^(3)x" " dx=`

A

`(-3sinx)/(4)+(sin3x)/(12)+c`

B

`(3sinx)/(4)-(sin3x)/(12)+c`

C

`(-4sinx)/(3)+(sin3x)/(12)+c`

D

`(4sinx)/(3)-(sin3x)/(12)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^3 x \, dx \), we can use a trigonometric identity to simplify the expression. Here’s a step-by-step solution: ### Step 1: Use the Trigonometric Identity We know from trigonometric identities that: \[ \cos 3x = 4 \cos^3 x - 3 \cos x \] Rearranging this gives us: \[ \cos^3 x = \frac{1}{4} (\cos 3x + 3 \cos x) \] ### Step 2: Substitute the Identity into the Integral Now, we substitute this identity into our integral: \[ \int \cos^3 x \, dx = \int \frac{1}{4} (\cos 3x + 3 \cos x) \, dx \] This simplifies to: \[ \frac{1}{4} \int (\cos 3x + 3 \cos x) \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \frac{1}{4} \left( \int \cos 3x \, dx + 3 \int \cos x \, dx \right) \] ### Step 4: Integrate Each Part Now we integrate each part separately: 1. For \( \int \cos 3x \, dx \): \[ \int \cos 3x \, dx = \frac{1}{3} \sin 3x \] 2. For \( \int \cos x \, dx \): \[ \int \cos x \, dx = \sin x \] ### Step 5: Combine the Results Now substituting back into our expression: \[ \frac{1}{4} \left( \frac{1}{3} \sin 3x + 3 \sin x \right) + C \] This simplifies to: \[ \frac{1}{12} \sin 3x + \frac{3}{4} \sin x + C \] ### Final Answer Thus, the integral \( \int \cos^3 x \, dx \) is: \[ \int \cos^3 x \, dx = \frac{1}{12} \sin 3x + \frac{3}{4} \sin x + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

intcos^(2)x" " dx=

intcos^(2)5x dx=

intcos^(2) x dx

intcos^5xdx

Evaluate the following integrals: intcos^(4)xdx

intcos^3(2x+3)dx

intcos(a-x)dx

Evaluate the following integrals: intcos^(4)2xdx

Evaluate the following integrals: intcos^(3)(3x+5)dx

intcos^(2/3)xsinxdx