Home
Class 12
MATHS
int(costheta-cos2theta)/(1-cos theta)d t...

`int(costheta-cos2theta)/(1-cos theta)d theta=`

A

`theta+2sin theta+c`

B

`theta-2sin theta+c`

C

`2theta+2sin theta+c`

D

`2theta-2sin theta+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\cos \theta - \cos 2\theta}{1 - \cos \theta} \, d\theta, \] we can follow these steps: ### Step 1: Use the identity for \(\cos 2\theta\) We know that \[ \cos 2\theta = 2\cos^2 \theta - 1. \] Substituting this into the integral gives: \[ I = \int \frac{\cos \theta - (2\cos^2 \theta - 1)}{1 - \cos \theta} \, d\theta. \] ### Step 2: Simplify the numerator Now, simplify the numerator: \[ \cos \theta - (2\cos^2 \theta - 1) = \cos \theta - 2\cos^2 \theta + 1 = -2\cos^2 \theta + \cos \theta + 1. \] So, the integral becomes: \[ I = \int \frac{-2\cos^2 \theta + \cos \theta + 1}{1 - \cos \theta} \, d\theta. \] ### Step 3: Factor the numerator Next, we can factor the numerator: \[ -2\cos^2 \theta + \cos \theta + 1 = -2(\cos^2 \theta - \frac{1}{2}\cos \theta - \frac{1}{2}). \] We can find the roots of the quadratic \(2x^2 - x - 1 = 0\) where \(x = \cos \theta\) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4}. \] Thus, the roots are: \[ x = 1 \quad \text{and} \quad x = -\frac{1}{2}. \] So, we can write: \[ -2\cos^2 \theta + \cos \theta + 1 = -2(\cos \theta - 1)(\cos \theta + \frac{1}{2}). \] ### Step 4: Substitute back into the integral Now, substituting this back into the integral gives: \[ I = \int \frac{-2(\cos \theta - 1)(\cos \theta + \frac{1}{2})}{1 - \cos \theta} \, d\theta. \] The \(1 - \cos \theta\) cancels out: \[ I = \int -2(\cos \theta + \frac{1}{2}) \, d\theta. \] ### Step 5: Split the integral Now, we can split the integral: \[ I = -2 \int \cos \theta \, d\theta - \int 1 \, d\theta. \] ### Step 6: Integrate The integrals are: \[ \int \cos \theta \, d\theta = \sin \theta, \] and \[ \int 1 \, d\theta = \theta. \] Thus, we have: \[ I = -2\sin \theta - \theta + C, \] where \(C\) is the constant of integration. ### Final Result The final result is: \[ I = 2\sin \theta + \theta + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

costheta.cos2theta.cos3theta=1/4

Evaluate: intsin^3(theta/2)/(cos(theta/2)sqrt(cos^3theta+cos^2theta+costheta))d theta

int(2sin2 theta-cos theta)/(6-cos^(2)theta-4sin theta)d theta

int(costheta)/(7+sintheta-2cos^2theta)d theta is equal to

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

Solve int(cos^(3)theta)/(1-sin theta)d theta

int(sqrt(cos2 theta))/(sin theta)d theta=

Evaluate: int cos2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

Prove that, 1/(costheta-cos3theta)+1/(costheta-cos5theta)+1/(costheta-cos7theta)+…+to n terms = 1/(2sintheta) [cottheta-cot(n+1)theta]