Home
Class 12
MATHS
int(cos2x)/(sin^(2)xcos^(2)x)dx=...

`int(cos2x)/(sin^(2)xcos^(2)x)dx=`

A

`cotx+tanx+c`

B

`cotx-tanx+c`

C

`tanx-cotx+c`

D

`-tanx-cotx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx \] Using the identity for \(\cos 2x\): \[ \cos 2x = \cos^2 x - \sin^2 x \] we can rewrite the integral as: \[ I = \int \frac{\cos^2 x - \sin^2 x}{\sin^2 x \cos^2 x} \, dx \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ I = \int \frac{\cos^2 x}{\sin^2 x \cos^2 x} \, dx - \int \frac{\sin^2 x}{\sin^2 x \cos^2 x} \, dx \] This simplifies to: \[ I = \int \frac{1}{\sin^2 x} \, dx - \int \frac{1}{\cos^2 x} \, dx \] ### Step 3: Integrate Each Part Now we can integrate each part separately: 1. The integral of \(\frac{1}{\sin^2 x}\) is \(-\cot x\). 2. The integral of \(\frac{1}{\cos^2 x}\) is \(\tan x\). Thus, we have: \[ I = -\cot x - \tan x + C \] where \(C\) is the constant of integration. ### Final Result So the final answer is: \[ I = -\cot x - \tan x + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sin^(2)xcos^(2)x)

int(cos2x)/(sin x)dx

Knowledge Check

  • int(cos2x)/(sin^(2)x.cos^(2)x)dx=

    A
    `tanx-cotx`
    B
    `cotx-tanx`
    C
    `tanx+cotx`
    D
    `-(tanx+cotx)`
  • int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx=

    A
    `tanx+cotx+c`
    B
    `tanx+cosecx+c`
    C
    `-tanx+cotx+c`
    D
    `tanx+secx+c`
  • int(1)/(sin^(2)x.cos^(2)x)dx=

    A
    `tanx+cotx`
    B
    `tanx-cotx`
    C
    `secx+tanx`
    D
    `2cot2x+c`
  • Similar Questions

    Explore conceptually related problems

    int(dx)/(sin^(2)xcos^(2)x

    int(cos x)/(sin^(2)x)dx

    int(cos2x)/((sin x+cos x)^(2))dx=

    int(1)/(sin^(2)xcos^(2)x)dx=?

    int(sin^(4)2x+cos^(4)2x)/(sin^(2)2xcos^(2)2x)dx=