Home
Class 12
MATHS
int(cos4x)/(sin^(2)x)dx=...

`int(cos4x)/(sin^(2)x)dx=`

A

`-cotx-4x-2sin2x+c`

B

`cotx-4x-2sin2x+c`

C

`4x+cotx-2sin2x+c`

D

`4x+cotx+2sin2x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\cos 4x}{\sin^2 x} \, dx\), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral: \[ I = \int \frac{\cos 4x}{\sin^2 x} \, dx \] ### Step 2: Use the identity for \(\cos 4x\) Using the trigonometric identity for \(\cos 4x\): \[ \cos 4x = 1 - 2\sin^2 2x \] we can substitute this into the integral: \[ I = \int \frac{1 - 2\sin^2 2x}{\sin^2 x} \, dx \] ### Step 3: Split the integral Now we can split the integral into two parts: \[ I = \int \frac{1}{\sin^2 x} \, dx - 2 \int \frac{\sin^2 2x}{\sin^2 x} \, dx \] ### Step 4: Solve the first integral The first integral, \(\int \frac{1}{\sin^2 x} \, dx\), is a standard integral: \[ \int \frac{1}{\sin^2 x} \, dx = -\cot x \] ### Step 5: Solve the second integral For the second integral, we can use the identity \(\sin 2x = 2 \sin x \cos x\): \[ \sin^2 2x = 4 \sin^2 x \cos^2 x \] Thus, we have: \[ \int \frac{\sin^2 2x}{\sin^2 x} \, dx = \int \frac{4 \sin^2 x \cos^2 x}{\sin^2 x} \, dx = 4 \int \cos^2 x \, dx \] ### Step 6: Solve \(\int \cos^2 x \, dx\) Using the identity \(\cos^2 x = \frac{1 + \cos 2x}{2}\): \[ \int \cos^2 x \, dx = \int \frac{1 + \cos 2x}{2} \, dx = \frac{1}{2} \int 1 \, dx + \frac{1}{2} \int \cos 2x \, dx \] Calculating these integrals gives: \[ \int 1 \, dx = x \quad \text{and} \quad \int \cos 2x \, dx = \frac{1}{2} \sin 2x \] Thus, \[ \int \cos^2 x \, dx = \frac{x}{2} + \frac{1}{4} \sin 2x \] ### Step 7: Combine results Now we can substitute back into our expression for \(I\): \[ I = -\cot x - 2 \left( 4 \left( \frac{x}{2} + \frac{1}{4} \sin 2x \right) \right) \] This simplifies to: \[ I = -\cot x - 4x - 2\sin 2x \] ### Step 8: Final result Thus, the final result is: \[ I = -\cot x - 4x - 2\sin 2x + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(cos^(4)x)/(sin^(2)x)dx

If int(cos^(4)x)/(sin^(2)x)dx=A cot x +B sin 2x +(C)/(2)x+D , then

" (6) "int(cos x)/(4-sin^(2)x)*dx

int(cos x)/(3-4sin^(2)x)dx

int(cos^(2)x)/(sin^(4)x)dx

int(cos x)/(4+sin x)dx

int(cos x)/((4+sin^(2)x)(5-4cos^(2)x))backslash dx

int_(0)^( pi/4)(cos x)/(4-sin^(2)x)*dx

int_(0)^( pi/4)(cos x)/(4-sin^(2)x)*dx

Evaluate : int_(0)^((pi)/(4)) (cos x)/(4-sin^(2)x)dx