Home
Class 12
MATHS
int(cosec theta-cot theta)/(cosectheta+ ...

`int(cosec theta-cot theta)/(cosectheta+ cot theta)d theta=`

A

`2tan theta/2 - x+c`

B

`2cot theta-theta+c`

C

`2tan theta-theta+c`

D

`2cot theta+theta+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\csc \theta - \cot \theta}{\csc \theta + \cot \theta} \, d\theta, \] we will simplify the expression step by step. ### Step 1: Rewrite the integral in terms of sine and cosine Using the definitions of cosecant and cotangent, we have: \[ \csc \theta = \frac{1}{\sin \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}. \] Substituting these into the integral gives: \[ I = \int \frac{\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta}} \, d\theta. \] ### Step 2: Simplify the expression The expression simplifies to: \[ I = \int \frac{1 - \cos \theta}{1 + \cos \theta} \, d\theta. \] ### Step 3: Use trigonometric identities We can use the identity \(1 - \cos \theta = 2 \sin^2 \frac{\theta}{2}\) and \(1 + \cos \theta = 2 \cos^2 \frac{\theta}{2}\): \[ I = \int \frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} \, d\theta = \int \tan^2 \frac{\theta}{2} \, d\theta. \] ### Step 4: Integrate \( \tan^2 \frac{\theta}{2} \) Recall that: \[ \tan^2 x = \sec^2 x - 1. \] Thus, \[ I = \int \tan^2 \frac{\theta}{2} \, d\theta = \int \left( \sec^2 \frac{\theta}{2} - 1 \right) d\theta = \int \sec^2 \frac{\theta}{2} \, d\theta - \int d\theta. \] The integral of \( \sec^2 x \) is \( \tan x \), so we get: \[ I = 2 \tan \frac{\theta}{2} - \theta + C, \] where \( C \) is the constant of integration. ### Final Answer Thus, the solution to the integral is: \[ I = 2 \tan \frac{\theta}{2} - \theta + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

(1)/(cosec theta+cot theta)=cosec theta-cot theta

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

Knowledge Check

  • If (cosec theta - cot theta)=2 , the (cosec theta +cot theta) is equal to

    A
    2
    B
    `1/2`
    C
    1
    D
    `3/2`
  • Similar Questions

    Explore conceptually related problems

    The value of sqrt((cosec theta-cot theta)/(cosec theta+cot theta)) div (sin theta)/(1+cos theta) is equal to: sqrt((cosec theta-cot theta)/(cosec theta+cot theta)) div (sin theta)/(1+cos theta) का मान निम्नलिखित में से किसक बराबर है?

    int(csc theta-cot theta)/(csc theta+cot theta)backslash d theta=

    csc theta(1+cos theta)(csc theta-cot theta)=1

    cosec^4 theta-cot^4 theta=cosec^2theta+cot^2 theta

    Prove each of the following identities : (i) ("cosec"theta + cot theta )/("cosec"theta - cot theta ) = ("cosec" theta + cot theta)^(2) = 1+2cot^(2) theta + 2"cosec" theta cot theta (ii) (sec theta + tan theta ) /( sec theta - tan theta) =(sec theta + tan theta )^(2) = 1+ 2tan^(2) theta + 2 sec theta tan theta

    If 5 costheta = 3 , then ( "cosec "theta+cot theta)/(" cosec " theta- cot theta) is equal to

    (sec theta+tan theta)/(csc theta+cot theta)=(csc theta-cot theta)/(sec theta-tan theta)