Home
Class 12
MATHS
int(sinx+cosecx)/(tanx)dx=...

`int(sinx+cosecx)/(tanx)dx=`

A

`sinx-cosecx+c`

B

`-sinx+cosecx+c`

C

`log|tanx|+c`

D

`log|cotx|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x + \csc x}{\tan x} \, dx \), we can break it down step by step. ### Step-by-Step Solution: 1. **Rewrite the Integral**: \[ I = \int \frac{\sin x + \csc x}{\tan x} \, dx \] 2. **Split the Integral**: We can separate the terms in the numerator: \[ I = \int \left( \frac{\sin x}{\tan x} + \frac{\csc x}{\tan x} \right) \, dx \] 3. **Simplify Each Term**: Recall that \( \tan x = \frac{\sin x}{\cos x} \) and \( \csc x = \frac{1}{\sin x} \). Thus: \[ \frac{\sin x}{\tan x} = \frac{\sin x}{\frac{\sin x}{\cos x}} = \cos x \] and \[ \frac{\csc x}{\tan x} = \frac{\frac{1}{\sin x}}{\frac{\sin x}{\cos x}} = \frac{\cos x}{\sin^2 x} = \cot x \] Therefore, we can rewrite the integral as: \[ I = \int \cos x \, dx + \int \cot x \, dx \] 4. **Integrate Each Term**: - The integral of \( \cos x \) is: \[ \int \cos x \, dx = \sin x \] - The integral of \( \cot x \) is: \[ \int \cot x \, dx = \ln |\sin x| \quad (\text{or } -\ln |\csc x| \text{ depending on the context}) \] 5. **Combine the Results**: Thus, we have: \[ I = \sin x + \ln |\sin x| + C \] 6. **Final Answer**: Therefore, the final result of the integral is: \[ I = \sin x - \csc x + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(secxcosecx)/(log(tanx))dx=

int(3sinx +4 cosecx)^(2) dx

int((sinx+cosx)dx)/sinx

int(tanx)/(secx+tanx)dx=

int(secx+tanx)^(2)dx=

int(cotx)/(cosecx-cotx)dx=

Evaluate int(tanx)/(secx+tanx)dx

int sec ^nx tanx dx=

int ((1+tanx)/(1-tanx))dx

The integral int_(-pi//2)^(pi//2)(e^(|sinx|).cosx)/(1+e^(tanx))dx equals