Home
Class 12
MATHS
int((1-tanx)/(1+tanx))^(2)dx=...

`int((1-tanx)/(1+tanx))^(2)dx=`

A

`-(tan((pi)/(4)-x)+x)+c`

B

`-(tan((pi)/(4)+x)+x)+c`

C

`tan((pi)/(4)-x)+x+c`

D

`tan((pi)/(4)+x)+x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( \frac{1 - \tan x}{1 + \tan x} \right)^2 dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \left( \frac{1 - \tan x}{1 + \tan x} \right)^2 dx \] ### Step 2: Use the Identity for Tangent We can express \( 1 \) in terms of \( \tan \frac{\pi}{4} \): \[ 1 = \tan \frac{\pi}{4} \] Thus, we can rewrite the expression as: \[ I = \int \left( \frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan x} \right)^2 dx \] ### Step 3: Apply the Tangent Subtraction Formula Using the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] we can identify \( a = \frac{\pi}{4} \) and \( b = x \): \[ I = \int \tan\left(\frac{\pi}{4} - x\right)^2 dx \] ### Step 4: Use the Identity for Tangent Squared We can use the identity: \[ \tan^2 \theta = \sec^2 \theta - 1 \] Thus, we have: \[ I = \int \left(\sec^2\left(\frac{\pi}{4} - x\right) - 1\right) dx \] ### Step 5: Split the Integral Now we can split the integral: \[ I = \int \sec^2\left(\frac{\pi}{4} - x\right) dx - \int 1 dx \] ### Step 6: Integrate Each Part The integral of \( \sec^2 \theta \) is \( \tan \theta \): \[ \int \sec^2\left(\frac{\pi}{4} - x\right) dx = -\tan\left(\frac{\pi}{4} - x\right) + C \] And the integral of \( 1 \) is simply: \[ \int 1 dx = x \] ### Step 7: Combine Results Combining these results gives: \[ I = -\tan\left(\frac{\pi}{4} - x\right) - x + C \] ### Step 8: Simplify Since \( \tan\left(\frac{\pi}{4} - x\right) = 1 - \tan x \) (from the tangent subtraction formula): \[ I = -\left(1 - \tan x\right) - x + C \] This simplifies to: \[ I = -1 + \tan x - x + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \tan x - x - 1 + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int((1+tan)/(1-tanx))^(2)dx=

int(1-tanx)(1+tanx)dx

int((1+tanx)/(1-tanx))dx

int(1-tanx)/(1+tanx)dx=

int ((1+tanx)/(1-tanx))dx

int(tanx)/((1-sinx))dx

int(1+tan^(2)x)/(1+tanx)dx=

(i) int (1-tanx)/(1+tanx) dx (ii) int (1- cot x)/(1+ cot x) dx

int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)dx equals to