Home
Class 12
MATHS
inttan^(-1)((2tanx)/(1-tan^(2)x))dx=...

`inttan^(-1)((2tanx)/(1-tan^(2)x))dx=`

A

`(x)/(2)+c`

B

`(x^(2))/(2)+c`

C

`x^(2)+c`

D

`2x^(2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \tan^{-1}\left(\frac{2\tan x}{1 - \tan^2 x}\right) dx \), we can follow these steps: ### Step 1: Recognize the formula We know that: \[ \tan(2x) = \frac{2\tan x}{1 - \tan^2 x} \] This means that: \[ \frac{2\tan x}{1 - \tan^2 x} = \tan(2x) \] Thus, we can rewrite the integral as: \[ I = \int \tan^{-1}(\tan(2x)) \, dx \] ### Step 2: Simplify the integral Since \( \tan^{-1}(\tan(\theta)) = \theta \) for \( \theta \) in the principal range of \( \tan^{-1} \), we have: \[ I = \int 2x \, dx \] ### Step 3: Integrate Now, we can integrate \( 2x \): \[ I = 2 \int x \, dx \] The integral of \( x \) is: \[ \int x \, dx = \frac{x^2}{2} \] Thus, \[ I = 2 \cdot \frac{x^2}{2} + C \] ### Step 4: Simplify the result The \( 2 \) in the numerator and denominator cancels out: \[ I = x^2 + C \] ### Final Result Therefore, the final answer is: \[ I = x^2 + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int sin^(-1)((2tanx )/(1+tan^(2)x))dx = ?

Evaluate the following integrals: inttan^(-1)((2x)/(1-x^(2)))dx

int(2tanx)/(2+3tan^(2)x)dx=

int(1+tan^(2)x)/(1-tan^(2)x)dx

If I=inttan^(-1)((2x)/(1-x^(2)))dx, " then ", I-2x tan^(-1)x=

(d)/(dx)[tan^(-1)((2+3tanx)/(3-2tanx))]=

int(1+tan^2x)/(1-tan^2x)dx=

int (tanx sec^(2)x)/((1-tan^(2)x))dx.

Evaluate the following integrals: inttan^(-1)((3x-x^(3))/(1-3x^(2)))dx

int(1-tan^(2)x)/(1+tan^(2)x)dx