Home
Class 12
MATHS
int(e^(2-5x)+(2)/(6x+1))dx=...

`int(e^(2-5x)+(2)/(6x+1))dx=`

A

`(e^(2-5x))/(5)+(1)/(3)log|6x+1|+c`

B

`(-e^(2-5x))/(5)-(1)/(3)log|6x+1|+c`

C

`(e^(2-5x))/(5)-(1)/(3)log|6x+1|+c`

D

`(-e^(2-5x))/(5)+(1)/(3)log|6x+1|+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int((e^(2x))/(e^(2x)-1))dx=

int(e^(2x)+1)/(e^(2x)-1)dx=

I=int(e^(2x)-1)/(e^(2x))dx

int(e^(2x))/(1+e^(2x))dx=

" (6) "int(e^(2x))/(e^(2x)+1)dx

int(e^(5x)-1)/(e^(2x))dx

int((2e^(x)+5)/(2e^(x)+1))dx=

int (e^(2x)-1)/(e^(2x)+1) dx=?

Evaluate: (i) int xe^(x)^^2dx (ii) int(e^(2x))/(1+e^(x))dx

" (1) "int(x^(2)+5x+6)/((x+2))dx