Home
Class 12
MATHS
If f'(x)=8x^(3)+3x^(2)-10x-k " and " f(0...

If `f'(x)=8x^(3)+3x^(2)-10x-k " and " f(0)=-3,f(-1)=0," then " f(x)=` is

A

`2x^(4)+x^(3)+5x^(2)+7x-3`

B

`2x^(4)+x^(3)+5x^(2)-7x+3`

C

`2x^(4)+x^(3)-5x^(2)+7x-3`

D

`2x^(4)+x^(3)-5x^(2)-7x-3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) given that \( f'(x) = 8x^3 + 3x^2 - 10x - k \) and the conditions \( f(0) = -3 \) and \( f(-1) = 0 \), we will follow these steps: ### Step 1: Integrate \( f'(x) \) We start by integrating \( f'(x) \) to find \( f(x) \): \[ f(x) = \int (8x^3 + 3x^2 - 10x - k) \, dx \] ### Step 2: Perform the Integration Integrating each term separately: \[ f(x) = \int 8x^3 \, dx + \int 3x^2 \, dx - \int 10x \, dx - \int k \, dx \] \[ = 2x^4 + x^3 - 5x^2 - kx + C \] ### Step 3: Use the Condition \( f(0) = -3 \) Now we use the condition \( f(0) = -3 \): \[ f(0) = 2(0)^4 + (0)^3 - 5(0)^2 - k(0) + C = -3 \] This simplifies to: \[ C = -3 \] ### Step 4: Substitute \( C \) into \( f(x) \) Now we substitute \( C \) back into the equation for \( f(x) \): \[ f(x) = 2x^4 + x^3 - 5x^2 - kx - 3 \] ### Step 5: Use the Condition \( f(-1) = 0 \) Next, we use the condition \( f(-1) = 0 \): \[ f(-1) = 2(-1)^4 + (-1)^3 - 5(-1)^2 - k(-1) - 3 = 0 \] Calculating each term: \[ = 2(1) - 1 - 5 + k - 3 = 0 \] This simplifies to: \[ 2 - 1 - 5 - 3 + k = 0 \] \[ k - 7 = 0 \implies k = 7 \] ### Step 6: Substitute \( k \) back into \( f(x) \) Now we substitute \( k = 7 \) back into the equation for \( f(x) \): \[ f(x) = 2x^4 + x^3 - 5x^2 - 7x - 3 \] ### Final Answer Thus, the function \( f(x) \) is: \[ \boxed{2x^4 + x^3 - 5x^2 - 7x - 3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

If f'(x)=(x-1)^(3) and f(2)+f(-2)=0 , then : f(x)=

If f(x)=1+x+x^(2)+x^(3)" and "A={:[(0,3),(0,0)]:}," then: "f(A)=

Let f(x)=x^(3)/3-x^(2)/2+x-16 . Find f^(')(0), f^(')(-1) .

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x)

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x).

if f(x)=2x^(2)+3x-5 , the what is f'(0)+3f'(-1)=

Evaluate If f' (x) = 4x ^(3) - 3x ^(2) + 2x + k, f (0) = 1 and f (1) = 4 find f (x)

If f(x)=x^(3)-(1)/(x^(3)) show that f(x)+f((1)/(x))=0

If f(x)=int(3x^(2)+1)/((x^(2)-1)^(3))dx and f(0)=0, then the value of (2)/(f(2))| is