Home
Class 12
MATHS
If f'(x)=x+(1)/(x)" and " f(1)=(5)/(2),"...

If `f'(x)=x+(1)/(x)" and " f(1)=(5)/(2)," then " f(x)=`

A

`(x^(2))/(2)+log|x|+2`

B

`(x^(2))/(2)+log|x|-2`

C

`(x^(2))/(2)+log|x|+4`

D

`(x^(2))/(2)+log|x|-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given that its derivative \( f'(x) = x + \frac{1}{x} \) and that \( f(1) = \frac{5}{2} \). ### Step-by-Step Solution: 1. **Start with the given derivative**: \[ f'(x) = x + \frac{1}{x} \] 2. **Integrate \( f'(x) \) to find \( f(x) \)**: \[ f(x) = \int \left( x + \frac{1}{x} \right) dx \] 3. **Perform the integration**: - The integral of \( x \) is \( \frac{x^2}{2} \). - The integral of \( \frac{1}{x} \) is \( \log |x| \). - Therefore, we have: \[ f(x) = \frac{x^2}{2} + \log |x| + C \] where \( C \) is the constant of integration. 4. **Use the initial condition \( f(1) = \frac{5}{2} \) to find \( C \)**: \[ f(1) = \frac{1^2}{2} + \log(1) + C \] \[ f(1) = \frac{1}{2} + 0 + C = \frac{5}{2} \] \[ C = \frac{5}{2} - \frac{1}{2} = \frac{4}{2} = 2 \] 5. **Substitute \( C \) back into the equation for \( f(x) \)**: \[ f(x) = \frac{x^2}{2} + \log |x| + 2 \] 6. **Final result**: \[ f(x) = \frac{x^2}{2} + \log x + 2 \] ### Final Answer: \[ f(x) = \frac{x^2}{2} + \log x + 2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

If f ' (x) = (1)/(x) + x and f (1) = (5)/(2) then f (x) = log x + (x ^(2))/( 2) +...............+c

If f'(x)=x/2 + 2/x and f(1)=5/4 , then find f(x) .

If f'(x)=x+(1)/(x)&f(1)=5/2 then f(x)=?

f(x)=(1-x)/(1+x) then f{f((1)/(x))}

If f(x)=(1-x)/(1+x) then f{f((1)/(x))}

If f(x)=2x-5 , then: f^-1(x)=

If f(x)=x for 0<=x<(1)/(2),f(x)=1f or x=(1)/(2) and f(x)=1- for (1)/(2)<<1 then at x=(1)/(2) the function is

If f'(x)=x^2+5 and f(0)=-1 then f(x)=

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))