Home
Class 12
MATHS
int(3x+4)^(3)dx=...

`int(3x+4)^(3)dx=`

A

`((3x+4)^(4))/(12)+c`

B

`(3(3x+4)^(4))/(4)+c`

C

`(3(3x+4)^(2))/(2)+c`

D

`(3(3x+4)^(2))/(4)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (3x + 4)^3 \, dx \), we can use the formula for integrating a function of the form \( (Ax + B)^n \). ### Step-by-Step Solution: 1. **Identify the components**: We have \( A = 3 \), \( B = 4 \), and \( n = 3 \). 2. **Use the integration formula**: The formula for integrating \( (Ax + B)^n \) is: \[ \int (Ax + B)^n \, dx = \frac{(Ax + B)^{n+1}}{A(n+1)} + C \] where \( C \) is the constant of integration. 3. **Apply the formula**: Plugging in our values: \[ \int (3x + 4)^3 \, dx = \frac{(3x + 4)^{3+1}}{3(3+1)} + C \] 4. **Simplify the expression**: This becomes: \[ \int (3x + 4)^3 \, dx = \frac{(3x + 4)^4}{3 \cdot 4} + C \] \[ = \frac{(3x + 4)^4}{12} + C \] 5. **Final result**: Thus, the integral evaluates to: \[ \int (3x + 4)^3 \, dx = \frac{(3x + 4)^4}{12} + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(7-3x)^(4)dx

Evaluate int(3x-4)^(1/3)dx

Evaluate int(3x-4)^(1/3)dx

int (3x+4)^2 dx

int2^((3x+4))dx=?

(i) int(3x+5)^(4)dx

Evaluate int (3x^2+4x^3)dx

int (-3x^(-4))dx

int(3x+1/x+4)dx=

int e^((3x+4))dx