Home
Class 12
MATHS
(x^(n-1))/(sqrt(1+4x^(n)))...

`(x^(n-1))/(sqrt(1+4x^(n)))`

A

`(sqrt(1+4x^(n)))/(n)+c`

B

`(sqrt(1+4x^(n)))/(2n)+c`

C

`(2sqrt(1+4x^(n)))/(n)+c`

D

`(nsqrt(1+4x^(n)))/(2)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

(b) int(x^(n-1)dx)/(sqrt(a^n+x^n))

int((a+bsin^(-1)x)^(n))/(sqrt(1-x^(2)))dx

int(1)/(x sqrt(1+x^(n)))dx

If I_(n)=int(x^(n)dx)/(sqrt(x^(2)+a)) then prove that I_(n)+(n-1)/(n)al_(n-2)=(1)/(n)x^(n-1)*sqrt(x^(2)+a)

int_(0)^(1)((3x^(2))/(sqrt(1-x^(6)))+(4x^(3))/(sqrt(1-x^(8)))+(5x^(4))/(sqrt(1-x^(10)))+...." to "n" terms ")dx=

Evaluate: int e^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n)))dx

int(x^(n-1)dx)/( sqrt(a^(n)+x^(n)))

If f(x)=lim_(n rarr oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)),x>1 then int(xf(x)log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx is

Let I_(n)=int(x^(n))/(sqrt(x^(2)+2x+5))dx then I_(n)=(x^(m-1))/(n)sqrt(x^(2)+2x+5)-lambda I_(n-1)-mu I_(n-2) where lambda,mu and m' are involving n' then

If quad sqrt(3) and x_(n+1)=(x_(n))/(1+sqrt(1+x_(n)^(2))),AA n in N then lim_(n rarr oo)2^(n)x_(n) is equal to ,AA n in N