Home
Class 12
MATHS
intsin^4 xcos^3x dx=...

`intsin^4 xcos^3x dx=`

A

`(sin^5x)/(5)+(sin^7x)/(7)+c`

B

`(sin^5x)/(5)-(sin^7x)/(7)+c`

C

`(sin^7x)/(7)+(sin^5x)/(5)+c`

D

`(-sin^7x)/(7)-(sin^5x)/(5)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sin^4 x \cos^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We can express \( \cos^3 x \) as \( \cos^2 x \cdot \cos x \): \[ I = \int \sin^4 x \cos^2 x \cos x \, dx \] ### Step 2: Use the Pythagorean identity Using the identity \( \cos^2 x = 1 - \sin^2 x \), we substitute: \[ I = \int \sin^4 x (1 - \sin^2 x) \cos x \, dx \] ### Step 3: Substitute \( u = \sin x \) Let \( u = \sin x \). Then, \( du = \cos x \, dx \). The integral becomes: \[ I = \int u^4 (1 - u^2) \, du \] ### Step 4: Expand the integrand Now, expand the integrand: \[ I = \int (u^4 - u^6) \, du \] ### Step 5: Integrate term by term Now we can integrate each term separately: \[ I = \int u^4 \, du - \int u^6 \, du \] \[ I = \frac{u^5}{5} - \frac{u^7}{7} + C \] ### Step 6: Substitute back \( u = \sin x \) Now, substituting back \( u = \sin x \): \[ I = \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

intsin^3xcos^3xdx

intsin4xcos3xdx

Evaluate: intsin^4xcos^2xdx

intsin^(3/4)xcosxdx

intsin^(3)xcos^(3)xdx=?

intsin^(4)x cos^(3)xdx=

intsin^3 2xcos^4 2xdx

intsin^3xcos^2xdx

intsin^2xcos^5xdx

intsin7xcos3xdx=