Home
Class 12
MATHS
int(cos^7x)/(sinx)dx=...

`int(cos^7x)/(sinx)dx=`

A

`log|sinx|-(3)/(2)sin^2x+(3)/(4)sin^4x-(1)/(6)sin^6x+c`

B

`log|sinx|-(3)/(4)sin^2x+(3)/(2)sin^4x-(1)/(6)sin^6x+c`

C

`log|sinx|-(3)/(2)sin^2x+(3)/(2)sin^4x-(1)/(6)sin^6x+c`

D

`log|sinx|-(3)/(4)sin^2x+(3)/(4)sin^4x-(1)/(6)sin^6x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos^7 x}{\sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{\cos^7 x}{\sin x} \, dx = \int \frac{\cos^6 x \cdot \cos x}{\sin x} \, dx \] ### Step 2: Use the Identity for Cosine We can express \( \cos^6 x \) in terms of \( \sin x \): \[ \cos^6 x = \cos^6 x = (1 - \sin^2 x)^3 \] Thus, we can rewrite the integral as: \[ I = \int \frac{(1 - \sin^2 x)^3 \cos x}{\sin x} \, dx \] ### Step 3: Substitution Let \( t = \sin x \). Then, \( dt = \cos x \, dx \). The integral becomes: \[ I = \int \frac{(1 - t^2)^3}{t} \, dt \] ### Step 4: Expand the Integrand Now, we expand \( (1 - t^2)^3 \): \[ (1 - t^2)^3 = 1 - 3t^2 + 3t^4 - t^6 \] Thus, we have: \[ I = \int \frac{1 - 3t^2 + 3t^4 - t^6}{t} \, dt = \int \left( \frac{1}{t} - 3t + 3t^3 - t^5 \right) \, dt \] ### Step 5: Integrate Term by Term Now we can integrate each term: \[ I = \int \frac{1}{t} \, dt - 3 \int t \, dt + 3 \int t^3 \, dt - \int t^5 \, dt \] Calculating each integral: 1. \( \int \frac{1}{t} \, dt = \ln |t| \) 2. \( \int t \, dt = \frac{t^2}{2} \) 3. \( \int t^3 \, dt = \frac{t^4}{4} \) 4. \( \int t^5 \, dt = \frac{t^6}{6} \) Putting it all together: \[ I = \ln |t| - \frac{3t^2}{2} + \frac{3t^4}{4} - \frac{t^6}{6} + C \] ### Step 6: Substitute Back Now we substitute back \( t = \sin x \): \[ I = \ln |\sin x| - \frac{3 \sin^2 x}{2} + \frac{3 \sin^4 x}{4} - \frac{\sin^6 x}{6} + C \] ### Final Answer Thus, the final answer is: \[ I = \ln |\sin x| - \frac{\sin^6 x}{6} - \frac{3 \sin^2 x}{2} + \frac{3 \sin^4 x}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(cos 2x)/(sinx)dx=

Evaluate the following integrals: int(cos^(9)x)/(sinx)dx

Evaluate : int(1+cos x)/(x+sinx)dx .

int(cos^(2)x)/(1+sinx)dx+int(sin^(2)x)/(1-cosx)dx=

int(sinx)/(sin(x-a))dx-int(cosx)/(cos(x-a))dx=

int(cos2x)/(cosx-sinx)dx=

int(cos2x)/(sinx+cosx)dx=

int(1+cos x)sinx dx

int cos^(-1) (sinx) dx

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=