Home
Class 12
MATHS
int(sin^3 2x)/(cos^5 2x)dx=...

`int(sin^3 2x)/(cos^5 2x)dx=`

A

`tan^4x+c`

B

`tan 4x+c`

C

`tan^4 2x+x+c`

D

`(1)/(8)tan^4 2x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin^3(2x)}{\cos^5(2x)} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{\sin^3(2x)}{\cos^5(2x)} \, dx \] We can rewrite \( \sin^3(2x) \) as \( \sin(2x) \cdot \sin^2(2x) \) and use the identity \( \sin^2(2x) = 1 - \cos^2(2x) \): \[ I = \int \frac{\sin(2x)(1 - \cos^2(2x))}{\cos^5(2x)} \, dx \] This simplifies to: \[ I = \int \left( \frac{\sin(2x)}{\cos^5(2x)} - \frac{\sin(2x) \cos^2(2x)}{\cos^5(2x)} \right) \, dx \] \[ I = \int \frac{\sin(2x)}{\cos^5(2x)} \, dx - \int \frac{\sin(2x)}{\cos^3(2x)} \, dx \] ### Step 2: Use substitution Let \( t = \tan(2x) \). Then, we have: \[ \frac{dt}{dx} = 2 \sec^2(2x) \quad \Rightarrow \quad dx = \frac{dt}{2 \sec^2(2x)} \] Also, we know: \[ \sin(2x) = \frac{t}{\sqrt{1+t^2}}, \quad \cos(2x) = \frac{1}{\sqrt{1+t^2}} \] Thus, we can rewrite \( \sin(2x) \) and \( \cos(2x) \): \[ \sin(2x) = t \cdot \frac{1}{\sqrt{1+t^2}}, \quad \cos(2x) = \frac{1}{\sqrt{1+t^2}} \] ### Step 3: Substitute into the integral Now substituting these into the integral: \[ I = \int \frac{t \cdot \frac{1}{\sqrt{1+t^2}}}{\left(\frac{1}{\sqrt{1+t^2}}\right)^5} \cdot \frac{dt}{2 \sec^2(2x)} \] This simplifies to: \[ I = \int \frac{t}{\frac{1}{(1+t^2)^{5/2}}} \cdot \frac{dt}{2 \cdot (1+t^2)} = \int \frac{t(1+t^2)^{5/2}}{2} \, dt \] ### Step 4: Integrate Now we can integrate: \[ I = \frac{1}{2} \int t^3 \, dt = \frac{1}{2} \cdot \frac{t^4}{4} + C = \frac{t^4}{8} + C \] ### Step 5: Substitute back Substituting back \( t = \tan(2x) \): \[ I = \frac{\tan^4(2x)}{8} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sin^3(2x)}{\cos^5(2x)} \, dx = \frac{\tan^4(2x)}{8} + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(sin 2x)/(5-cos^(2) x)dx

int(4-5sin x)/(cos^(2)x)dx

int(sin2x)/(5-cos^(2)x)dx

int( sin2 x)/(3+cos^(2)x)dx

int(sin x)/(cos3x*cos2x)dx

int(sin2x)/(3-2 cos2x)dx

int(sin^2x+cos^2x)/(cos^3x)dx

int (5-93 sin x)/(cos^2 x) dx

(int(sin^(3/2)x+cos^(3/2)x)dx)/(sqrt(sin^(3)x cos^(3)x sin(x-alpha)))

int (2-3 sin x)/(cos^(2) x) dx