Home
Class 12
MATHS
int(sin 2x)/(a sin^2 x+b cos^2 x)dx=...

`int(sin 2x)/(a sin^2 x+b cos^2 x)dx=`

A

`(-1)/(a+b)log|asin^2 x+bcos^2x|+c`

B

`(-1)/(a-b)log|asin^2 x+bcos^2x|+c`

C

`(1)/(a-b)log|asin^2 x+bcos^2x|+c`

D

`(1)/(a+b)log|asin^2 x+bcos^2x|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sin 2x}{a \sin^2 x + b \cos^2 x} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin 2x}{a \sin^2 x + b \cos^2 x} \, dx. \] Using the identity \(\sin 2x = 2 \sin x \cos x\), we can rewrite the integral as: \[ I = \int \frac{2 \sin x \cos x}{a \sin^2 x + b \cos^2 x} \, dx. \] ### Step 2: Substitution Let \(t = a \sin^2 x + b \cos^2 x\). We need to find \(dt\): \[ dt = (2a \sin x \cos x - 2b \sin x \cos x) \, dx = 2(a - b) \sin x \cos x \, dx. \] Thus, we can express \(dx\) in terms of \(dt\): \[ dx = \frac{dt}{2(a - b) \sin x \cos x}. \] ### Step 3: Substitute in the Integral Substituting \(t\) and \(dx\) into the integral, we have: \[ I = \int \frac{2 \sin x \cos x}{t} \cdot \frac{dt}{2(a - b) \sin x \cos x}. \] The \(\sin x \cos x\) terms cancel out: \[ I = \int \frac{1}{t} \cdot \frac{dt}{(a - b)} = \frac{1}{(a - b)} \int \frac{dt}{t}. \] ### Step 4: Integrate The integral \(\int \frac{dt}{t}\) is: \[ \int \frac{dt}{t} = \log |t| + C. \] Thus, we have: \[ I = \frac{1}{(a - b)} \log |t| + C. \] ### Step 5: Substitute Back Now we substitute back for \(t\): \[ I = \frac{1}{(a - b)} \log |a \sin^2 x + b \cos^2 x| + C. \] ### Final Answer The final result for the integral is: \[ \int \frac{\sin 2x}{a \sin^2 x + b \cos^2 x} \, dx = \frac{1}{(a - b)} \log |a \sin^2 x + b \cos^2 x| + C. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

Write a value of int(sin2x)/(a^2sin^2x+b^2cos^2x)\ dx

int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx is equal to:

Evaluate: int(sin2x)/(a cos^(2)x+b sin^(2)x)dx

int(sin2x)/((sin x+cos x)^(2))dx

int(cos 2x)/(1+sin x cos x)dx

Evaluate: (i) int(sin2x)/(a cos^(2)x+b sin^(2)x)dx (ii) int(cos x)/(2+3sin x)dx

int(sin(2x))/(a cos^(2)x+b sin^(2)x)dx=

int(sin2x-cos2x)/(sin2x*cos2x)dx=?