Home
Class 12
MATHS
int(e^(log tan x))/(3tan^2 x+2)dx=...

`int(e^(log tan x))/(3tan^2 x+2)dx=`

A

`(1)/(6)log|3sin^2 x+2cos^2x|+c`

B

`(1)/(2)log|3sin^2 x+2cos^2x|+c`

C

`(1)/(3)log|3sin^2 x+2cos^2x|+c`

D

`(1)/(12)log|3sin^2 x+2cos^2x|+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int e^(ln(tan x))dx

int(sec^(2)x)/(log(tan x)^(tan x)dx)

int(log(tan x))/(sin x cos x)dx=

int(e^(ln tan^(-1)x))/(1+x^(2))dx

If the integral int(5tan x)/(tan x-2)dx=x+a ln|sin x-2cos x|+k then a is equal to (1)1(2)2(3)1(4)2

int (e^(m tan^(-1) x))/(1+x^(2)) dx=?

Evaluate: (i) int(sec x)/(log(sec x+tan x)dx) (ii) int(cos ecx)/((log tan x)/(2))dx

Evaluate: int(log((tan x)/(2)))/(sin x)dx

int (ln (tan x)) / (sin x cos x) dx

int(e^(a tan^(-1)x))/(1+x^(2))dx