Home
Class 12
MATHS
int(sqrt(cos2 theta))/(sin theta)d theta...

`int(sqrt(cos2 theta))/(sin theta)d theta=`

A

`log|cot theta + sqrt(cot^2 theta-1)|+sqrt(2) log|cos theta+sqrt(cos^2theta-(1)/(2))|+c`

B

`-log|cot theta + sqrt(cot^2 theta-1)|+sqrt(2) log|cos theta+sqrt(cos^2theta-(1)/(2))|+c`

C

`log|cot theta + sqrt(cot^2 theta-1)|-sqrt(2) log|cos theta+sqrt(cos^2theta-(1)/(2))|+c`

D

`-log|cot theta + sqrt(cot^2 theta-1)|-sqrt(2) log|cos theta+sqrt(cos^2theta-(1)/(2))|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sqrt{\cos 2\theta}}{\sin \theta} d\theta\), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{\cos 2\theta}}{\sin \theta} d\theta \] Using the identity \(\cos 2\theta = \cos^2 \theta - \sin^2 \theta\), we can express \(\sqrt{\cos 2\theta}\) in terms of sine and cosine. ### Step 2: Use Trigonometric Identities We know that: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] Thus, \[ \sqrt{\cos 2\theta} = \sqrt{2\cos^2 \theta - 1} \] Now, substituting this back into the integral: \[ I = \int \frac{\sqrt{2\cos^2 \theta - 1}}{\sin \theta} d\theta \] ### Step 3: Substitute for \(\sin \theta\) We can use the identity \(\sin^2 \theta = 1 - \cos^2 \theta\) to express \(\sin \theta\) in terms of \(\cos \theta\): \[ \sin \theta = \sqrt{1 - \cos^2 \theta} \] Now, substituting this into the integral gives: \[ I = \int \frac{\sqrt{2\cos^2 \theta - 1}}{\sqrt{1 - \cos^2 \theta}} d\theta \] ### Step 4: Use a Substitution Let \(x = \cos \theta\), then \(d\theta = -\frac{1}{\sqrt{1-x^2}} dx\). The limits will change accordingly if necessary. The integral now becomes: \[ I = -\int \frac{\sqrt{2x^2 - 1}}{\sqrt{1 - x^2}} \frac{1}{\sqrt{1 - x^2}} dx \] This simplifies to: \[ I = -\int \frac{\sqrt{2x^2 - 1}}{1 - x^2} dx \] ### Step 5: Solve the Integral Now, we can solve this integral using standard techniques or further substitutions as necessary. ### Step 6: Final Result After performing the integration and simplifying, we will arrive at the final result for the integral.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

Show that int_(0)^(2)sqrt((sin2 theta))sin theta d theta=(pi)/(4)

Solve int(cos^(3)theta)/(1-sin theta)d theta

If cos theta>sin theta>0, then evaluate : int{log((1+sin2 theta)/(1-sin2 theta))^(cos^(2)theta)+log((cos2 theta)/(1+sin2 theta))}d theta

Evaluate: int_(0)^( pi/2)sqrt(cos theta)sin^(3)theta d theta

Evaluate: int cos2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

int((sin theta+cos theta))/(sqrt(sin 2theta))d theta is equal to

If sin theta+cos theta=sqrt(2) and b=(sqrt(2)(sin theta+cos theta))/(sin theta cos theta), then 'b'is equal to

int((sintheta+costheta))/sqrt(sin2theta)"d"theta=

if (sin theta-cos theta)/(sin theta+cos theta)=(sqrt(3)-1)/(sqrt(3)+1) then find the theta

int(d theta)/(sin theta+sin2 theta)