Home
Class 12
MATHS
int(dx)/(1+e^(-x)) is equal to...

`int(dx)/(1+e^(-x))` is equal to

A

`log |e^(-x)+1|+c`

B

`-log |e^(-x)+1|+c`

C

`log |e^(x)+1|+c`

D

`-log |e^(x)+1|+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)) is equal to :

int(dx)/(e^(x)+e^(-x)) is equal to

int(1+x)/(x+e^(-x))dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)-1)dx is equal to

The value of int_(0) ^(1) (dx )/( e ^(x) + e) is equal to

int(e^x)/(e^(x)+1)dx" is equal to "

int e^(x)dx is equal to