Home
Class 12
MATHS
int (dx)/((1+e^x)(1+e^(-x)))=...

`int (dx)/((1+e^x)(1+e^(-x)))=`

A

`(-1)/(1+e^x)+c`

B

`(1)/(1+e^x)+c`

C

`(e^x)/(1+e^x)+c`

D

`(-e^x)/(1+e^x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(1 + e^x)(1 + e^{-x})} \] we can simplify the integrand step by step. ### Step 1: Simplify the Denominator We start by rewriting the denominator: \[ (1 + e^x)(1 + e^{-x}) = 1 + e^x + e^{-x} + 1 = 2 + e^x + e^{-x} \] Using the identity \( e^{-x} = \frac{1}{e^x} \), we can express this as: \[ = 2 + e^x + \frac{1}{e^x} = 2 + \frac{e^{2x} + 1}{e^x} \] Thus, we can rewrite \( I \) as: \[ I = \int \frac{e^x \, dx}{e^x(2 + e^x + e^{-x})} = \int \frac{e^x \, dx}{2e^x + e^{2x} + 1} \] ### Step 2: Substitution Let \( t = 1 + e^x \). Then, we differentiate \( t \): \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x} \] Substituting \( e^x = t - 1 \) into the integral gives: \[ I = \int \frac{dt}{(t)(t)} = \int \frac{dt}{t^2} \] ### Step 3: Integrate Now we can integrate: \[ I = \int t^{-2} \, dt = -\frac{1}{t} + C \] ### Step 4: Back Substitute We substitute back \( t = 1 + e^x \): \[ I = -\frac{1}{1 + e^x} + C \] ### Final Answer Thus, the final answer for the integral is: \[ I = -\frac{1}{1 + e^x} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+1-2e^(-x))=

int(1)/(e^(x)(1+e^(-x)))dx=

int(1)/((e^(x)-1)(1-e^(-x)))dx

int(e^(x))/((1+e^(x))(2+e^(x)))dx

If int(dx)/(1+e^x)=x+Klog(1+e^(x))+C then K is equal to

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int _(1) ^(e ) (dx )/(ln (x ^(x) e ^(x)))

int(e^x dx)/(1-e^(x))