Home
Class 12
MATHS
To find the value of int(1+logx)/(x)dx, ...

To find the value of `int(1+logx)/(x)dx`, the proper substitution is

A

`logx=t`

B

`1+logx=t`

C

`(1)/(x)=t`

D

`x=t`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 + \log x}{x} \, dx \), we can use a substitution method. Here’s the step-by-step solution: ### Step 1: Identify the substitution Let’s set: \[ t = 1 + \log x \] ### Step 2: Differentiate the substitution Now, we need to find \( dt \) in terms of \( dx \): \[ \frac{dt}{dx} = \frac{d}{dx}(1 + \log x) = \frac{1}{x} \] Thus, we can express \( dt \) as: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt \] ### Step 3: Express \( x \) in terms of \( t \) From our substitution \( t = 1 + \log x \), we can express \( \log x \) as: \[ \log x = t - 1 \quad \Rightarrow \quad x = e^{t-1} \] ### Step 4: Substitute in the integral Now, substituting \( t \) and \( dx \) into the integral: \[ \int \frac{1 + \log x}{x} \, dx = \int \frac{t}{x} \cdot x \, dt = \int t \, dt \] ### Step 5: Integrate Now we can integrate: \[ \int t \, dt = \frac{t^2}{2} + C \] ### Step 6: Substitute back for \( t \) Now, substituting back \( t = 1 + \log x \): \[ \frac{(1 + \log x)^2}{2} + C \] ### Final Result Thus, the value of the integral is: \[ \int \frac{1 + \log x}{x} \, dx = \frac{(1 + \log x)^2}{2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(logx-1)/(x)dx

int(logx)/(x)dx=?

int(logx)/(x^3)dx=

int (logx)^3/(x)dx

The value of int(logx)/(x+1)^(2)dx is

int(logx)/(x+1)^2dx=

int((logx)^n)/(x)dx=

int(cos(logx))/(x)dx

Evaluate : int(logx)/(x^(2))dx .