Home
Class 12
MATHS
int(1)/(x^3)(logx^x)^2dx=...

`int(1)/(x^3)(logx^x)^2dx=`

A

`(1)/(3)x^3logx+c`

B

`(1)/(3)(logx)^3+c`

C

`3log|logx|+c`

D

`(logx)^3+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{x^3 (\log x)^2} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the given integral: \[ I = \int \frac{1}{x^3 (\log x)^2} \, dx \] ### Step 2: Use Logarithmic Identity Using the property of logarithms, we know that: \[ \log x^x = x \log x \] Thus, we can rewrite the integral: \[ I = \int \frac{1}{x^3} \cdot \frac{1}{(\log x)^2} \, dx \] ### Step 3: Change of Variables Let \( t = \log x \). Then, the differential \( dx \) can be expressed as: \[ dx = e^t \, dt \] Also, since \( x = e^t \), we have: \[ x^3 = (e^t)^3 = e^{3t} \] Substituting these into the integral gives: \[ I = \int \frac{1}{e^{3t}} \cdot \frac{1}{t^2} \cdot e^t \, dt = \int \frac{1}{e^{2t} t^2} \, dt \] ### Step 4: Simplify the Integral Now we simplify the integral: \[ I = \int \frac{1}{t^2 e^{2t}} \, dt \] ### Step 5: Integration by Parts To solve this integral, we can use integration by parts. Let: - \( u = \frac{1}{t^2} \) → \( du = -\frac{2}{t^3} dt \) - \( dv = e^{-2t} dt \) → \( v = -\frac{1}{2} e^{-2t} \) Using integration by parts: \[ I = uv - \int v \, du \] Substituting the values: \[ I = -\frac{1}{2t^2} e^{-2t} - \int -\frac{1}{2} e^{-2t} \left(-\frac{2}{t^3}\right) dt \] This simplifies to: \[ I = -\frac{1}{2t^2} e^{-2t} + \int \frac{e^{-2t}}{t^3} dt \] ### Step 6: Evaluate the Remaining Integral The integral \( \int \frac{e^{-2t}}{t^3} dt \) can be evaluated using a series expansion or numerical methods, but for our purposes, we can express the result in terms of the original variable \( x \). ### Step 7: Substitute Back Recall that \( t = \log x \). Thus, we can express our final answer in terms of \( x \): \[ I = -\frac{1}{2(\log x)^2} \cdot \frac{1}{x^2} + C \] where \( C \) is the constant of integration. ### Final Answer The final result of the integral is: \[ I = -\frac{1}{2(\log x)^2 x^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int1/x^(3)[logx^(x)]^(2)dx=

int(1)/(x(logx))dx=?

int1/(x(1-logx)^(2))dx=

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx

int(dx)/(x(3+logx))=

Evaluate int((x+1)/(x))(x+logx)^(2)dx

int(x^(x))^(2)(1+logx)dx=

Evaluate int_(1)^(2)(logx)/(x)dx