Home
Class 12
MATHS
int(cos 2x)/(sinx)dx=...

`int(cos 2x)/(sinx)dx=`

A

`log|tan((x)/(2))|-2cosx+c`

B

`log|tan((x)/(2))|+2cosx+c`

C

`(1)/(2)log|tan((x)/(2))|-2cosx+c`

D

`(1)/(2)log|tan((x)/(2))|+2cosx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos 2x}{\sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite \(\cos 2x\) in terms of \(\sin x\) Using the double angle identity for cosine, we have: \[ \cos 2x = 1 - 2\sin^2 x \] Thus, we can rewrite the integral: \[ I = \int \frac{1 - 2\sin^2 x}{\sin x} \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \int \frac{1}{\sin x} \, dx - 2 \int \sin x \, dx \] ### Step 3: Evaluate the first integral The integral \(\int \frac{1}{\sin x} \, dx\) can be rewritten as: \[ \int \csc x \, dx \] The integral of \(\csc x\) is: \[ \int \csc x \, dx = \ln |\csc x - \cot x| + C \] ### Step 4: Evaluate the second integral The integral \(\int \sin x \, dx\) is: \[ \int \sin x \, dx = -\cos x + C \] ### Step 5: Combine the results Now substituting back into our equation for \(I\): \[ I = \ln |\csc x - \cot x| - 2(-\cos x) + C \] This simplifies to: \[ I = \ln |\csc x - \cot x| + 2\cos x + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \ln |\csc x - \cot x| + 2\cos x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(cos^7x)/(sinx)dx=

int(1+cos x)sinx dx

int(cos2x)/(cosx-sinx)dx=

int(cos2x)/(sinx+cosx)dx=

int(cos^(2)x)/(1+sinx)dx+int(sin^(2)x)/(1-cosx)dx=

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

The value of int(cos2x)/(cosx+sinx)dx is

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

int(cos2x)/((sinx+cosx)^(2))dx is equal to