Home
Class 12
MATHS
int(dx)/(cosx(1-cosx))=...

`int(dx)/(cosx(1-cosx))=`

A

`log|secx+tanx|-tan((x)/(2))+c`

B

`log|secx+tanx|+tan((x)/(2))+c`

C

`log|secx+tanx|-cot((x)/(2))+c`

D

`log|secx+tanx|+cot((x)/(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\cos x (1 - \cos x)} \] we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\cos x (1 - \cos x)} \] To make integration easier, we can separate the terms in the denominator. ### Step 2: Separate the Denominator We can rewrite the integrand as follows: \[ I = \int \left( \frac{1}{\cos x} + \frac{1}{1 - \cos x} \right) dx \] This is done by expressing \( \frac{1}{\cos x (1 - \cos x)} \) as: \[ \frac{1}{\cos x} \cdot \frac{1}{1 - \cos x} \] ### Step 3: Split the Integral Now we can split the integral into two parts: \[ I = \int \sec x \, dx + \int \frac{1}{1 - \cos x} \, dx \] ### Step 4: Solve the First Integral The first integral \( \int \sec x \, dx \) can be solved using the standard formula: \[ \int \sec x \, dx = \ln | \sec x + \tan x | + C_1 \] ### Step 5: Solve the Second Integral For the second integral \( \int \frac{1}{1 - \cos x} \, dx \), we can use the identity \( 1 - \cos x = 2 \sin^2 \left( \frac{x}{2} \right) \): \[ \int \frac{1}{1 - \cos x} \, dx = \int \frac{1}{2 \sin^2 \left( \frac{x}{2} \right)} \, dx \] This can be rewritten as: \[ \frac{1}{2} \int \csc^2 \left( \frac{x}{2} \right) \, dx \] The integral of \( \csc^2 \) is: \[ \int \csc^2 z \, dz = -\cot z + C \] So, substituting back, we have: \[ \int \csc^2 \left( \frac{x}{2} \right) \, dx = -2 \cot \left( \frac{x}{2} \right) + C_2 \] Thus, \[ \int \frac{1}{1 - \cos x} \, dx = -\cot \left( \frac{x}{2} \right) + C_2 \] ### Step 6: Combine the Results Now we can combine the results of both integrals: \[ I = \ln | \sec x + \tan x | - \cot \left( \frac{x}{2} \right) + C \] where \( C = C_1 + C_2 \) is the constant of integration. ### Final Answer Thus, the final result for the integral is: \[ I = \ln | \sec x + \tan x | - \cot \left( \frac{x}{2} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(1+cosx)

int(dx)/((1-cosx))=?

int(dx)/(sinx-cosx)=

int1/(cosx(1+cosx))dx=

int(1-cosx)/(cosx(1+cosx))dx

int(1-cosx)/(cosx(1+cosx))dx

int(cosx)/(1-cosx)dx=

Evaluate: int (dx)/(1-cosx)