Home
Class 12
MATHS
int(1+tan^2x)/(1-tan^2x)dx=...

`int(1+tan^2x)/(1-tan^2x)dx=`

A

`(1)/(2)log|sec2x+tan2x|+c`

B

`(-1)/(2)log|sec2x+tan2x|+c`

C

`2log|sec2x+tan2x|+c`

D

`-2log|sec2x+tan2x|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1 + \tan^2 x}{1 - \tan^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral using trigonometric identities We know that \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \). Therefore, we can rewrite the integral as: \[ I = \int \frac{1 + \frac{\sin^2 x}{\cos^2 x}}{1 - \frac{\sin^2 x}{\cos^2 x}} \, dx \] ### Step 2: Simplify the expression Combine the terms in the numerator and denominator: \[ I = \int \frac{\frac{\cos^2 x + \sin^2 x}{\cos^2 x}}{\frac{\cos^2 x - \sin^2 x}{\cos^2 x}} \, dx \] This simplifies to: \[ I = \int \frac{\cos^2 x + \sin^2 x}{\cos^2 x - \sin^2 x} \, dx \] Using the identity \( \cos^2 x + \sin^2 x = 1 \), we have: \[ I = \int \frac{1}{\cos^2 x - \sin^2 x} \, dx \] ### Step 3: Use the identity for cosine Recall that \( \cos^2 x - \sin^2 x = \cos 2x \). Thus, we can rewrite the integral as: \[ I = \int \frac{1}{\cos 2x} \, dx \] ### Step 4: Rewrite in terms of secant This can be expressed as: \[ I = \int \sec 2x \, dx \] ### Step 5: Integrate using the formula for secant The integral of \( \sec \theta \) is given by: \[ \int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta| + C \] Applying this to our integral: \[ I = \frac{1}{2} \ln |\sec 2x + \tan 2x| + C \] ### Final Answer Thus, the final result is: \[ I = \frac{1}{2} \ln |\sec 2x + \tan 2x| + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(1+tan^(2)x)/(1-tan^(2)x)dx

Evaluate: int(tanxsec^2x)/(1-tan^2x)dx

int(2tan x)/(1+tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

Evaluate int cos^(-1)((1-tan^2x)/(1+tan^(2)x))dx

" (.) "int(tan x)/(1+tan x)dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

int(1+tan^(2)x)/(1+cot^(2)x)dx-

int(1+tan^(2)x)/(1+cot^(2)x)dx