Home
Class 12
MATHS
int(cos2x)/((sinx+cosx)^(2))dx is equal ...

`int(cos2x)/((sinx+cosx)^(2))dx` is equal to

A

`-log|sec((pi)/(4)+x)|+c`

B

`log|sec((pi)/(4)+x)|+c`

C

`-log|sec((pi)/(4)-x)|+c`

D

`log|sec((pi)/(4)-x)|+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answers int(cos2x)/((sinx+cosx)^2)dx is equal (A) (-1)/(sinx+cosx)+C (B) log|sinx+cosx|+C C) log|sinx-cosx|+C (D) 1/((sinx+cosx)^2)

int(cos2x)/(sinx+cosx)dx=

int(x^(2))/((x sinx+cosx)^(2))dx is equal to

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

int(sinx-cosx)^(4)(sinx+cosx)dx is equal to

int(cosx-sinx)/(( sin x+ cos x)^(2))dx

int(sinx-cosx)^(2)dx=