Home
Class 12
MATHS
int(cos(x-a))/(sin(x+b))dx=...

`int(cos(x-a))/(sin(x+b))dx=`

A

`x sin(a-b)-cos(a-b)log|sin(x+b)|+c`

B

`x sin(a-b)+cos(a-b)log|sin(x+b)|+c`

C

`x sin(a+b)-cos(a+b)log|sin(x+b)|+c`

D

`x sin(a+b)+cos(a+b)log|sin(x+b)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos(x-a)}{\sin(x+b)} \, dx \), we can follow these steps: ### Step 1: Rewrite the cosine term We can rewrite \( \cos(x-a) \) using the cosine subtraction formula: \[ \cos(x-a) = \cos x \cos a + \sin x \sin a \] Thus, we can express the integral as: \[ I = \int \frac{\cos x \cos a + \sin x \sin a}{\sin(x+b)} \, dx \] ### Step 2: Substitute the sine term Next, we will express \( \sin(x+b) \) as: \[ \sin(x+b) = \sin x \cos b + \cos x \sin b \] Now, substituting this into our integral gives: \[ I = \int \frac{\cos x \cos a + \sin x \sin a}{\sin x \cos b + \cos x \sin b} \, dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ I = \int \frac{\cos x \cos a}{\sin x \cos b + \cos x \sin b} \, dx + \int \frac{\sin x \sin a}{\sin x \cos b + \cos x \sin b} \, dx \] ### Step 4: Use substitution For the first integral, we can use the substitution \( u = \sin(x+b) \), which gives \( du = \cos(x+b) \, dx \). This substitution will help simplify the integral. ### Step 5: Evaluate the integrals After performing the substitution, we can evaluate each integral separately: 1. The first integral will yield a logarithmic term. 2. The second integral will yield a linear term. ### Step 6: Combine results Finally, we combine the results from both integrals to get the final answer. ### Final Answer Thus, the integral evaluates to: \[ I = x \sin(a+b) + \cos(a+b) \log|\sin(x+b)| + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(cos(x-a))/(sin(x+a))dx=

int(sin(x+a))/(cos(x-b))dx=

int(dx)/(cos(x-a)sin(x-b))=

I=int(1)/(cos(x+a)sin(x+b))dx

int(cos2x)/(sin x)dx

int(cos3x)/(sin x)dx

int(cos x)/(sin^(3)x)dx

int(cos x)/(sin(x+a))dx

int(cos x)/(sin(x-a))dx

int(cos x)/(sin^(7)x)dx