Home
Class 12
MATHS
int(sin(x+a))/(cos(x-b))dx=...

`int(sin(x+a))/(cos(x-b))dx=`

A

`x sin(a+b)+cos(a+b)log|sec(x-b)|+c`

B

`x sin(a-b)+cos(a-b)log|sec(x-b)|+c`

C

`x sin(a-b)-cos(a-b)log|sec(x-b)|+c`

D

`x sin(a+b)-cos(a+b)log|sec(x-b)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin(x + a)}{\cos(x - b)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the angle in the sine function. We can express \( x + a \) as: \[ x + a = (x - b) + (a + b) \] This allows us to rewrite the integral as: \[ I = \int \frac{\sin((x - b) + (a + b))}{\cos(x - b)} \, dx \] ### Step 2: Use the Sine Addition Formula Using the sine addition formula \( \sin(A + B) = \sin A \cos B + \cos A \sin B \), we can expand the sine function: \[ \sin((x - b) + (a + b)) = \sin(x - b) \cos(a + b) + \cos(x - b) \sin(a + b) \] Substituting this back into the integral gives: \[ I = \int \frac{\sin(x - b) \cos(a + b) + \cos(x - b) \sin(a + b)}{\cos(x - b)} \, dx \] ### Step 3: Simplify the Integral Now we can separate the integral: \[ I = \int \left( \cos(a + b) \tan(x - b) + \sin(a + b) \right) \, dx \] ### Step 4: Integrate Each Term Now we can integrate each term separately: 1. The integral of \( \tan(x - b) \): \[ \int \tan(x - b) \, dx = -\log|\cos(x - b)| \] 2. The integral of a constant \( \sin(a + b) \): \[ \int \sin(a + b) \, dx = \sin(a + b) x \] Putting these together, we have: \[ I = \cos(a + b) \left(-\log|\cos(x - b)|\right) + \sin(a + b) x + C \] ### Step 5: Final Result Thus, the final result for the integral is: \[ I = \sin(a + b) x - \cos(a + b) \log|\cos(x - b)| + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(sin(x+a))/(cos(x-a))dx=

int(sin(x-a)dx)/cos(x-b)

G) int(sin x)/(cos(x-a))dx

Evaluate: int(1)/(sin(x-a)cos(x-b))dx

If int(k)/(sin(x-a)cos(x-b))dx=log[(sin(x-a))/(cos(x-b))]+c , then k=

int(sin(x+a))/(cos x) dx

int(cos(x-a))/(sin(x+b))dx=

int(sin x)/(cos(x-a))dx

int(cos(x-a))/(sin(x+b))dx

int(1)/(sin(x-a)cos(x-b))dx is equal to