Home
Class 12
MATHS
int(dx)/(cos(x-a)sin(x-b))=...

`int(dx)/(cos(x-a)sin(x-b))=`

A

`(1)/(cos(b-a))log|cos(x-a)/sin(x-b)|+c`

B

`(1)/(cos(b-a))log|sin(x-b)/cos(x-a)|+c`

C

`(1)/(sin(b-a))log|cos(x-a)/sin(x-b)|+c`

D

`(1)/(sin(b-a))log|sin(x-b)/cos(x-a)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\cos(x-a) \sin(x-b)}, \] we can use a trigonometric identity and properties of logarithms. Let's go through the steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\cos(x-a) \sin(x-b)}. \] ### Step 2: Use Trigonometric Identity We can express the integrand using the identity for the difference of angles. We rewrite the integral as follows: \[ I = \frac{1}{\cos(b-a)} \int \frac{\cos(b-a)}{\cos(x-a) \sin(x-b)} \, dx. \] ### Step 3: Apply the Cosine Difference Identity Using the cosine difference identity, we have: \[ \cos(b-a) = \cos(x-a) \cos(x-b) + \sin(x-a) \sin(x-b). \] Substituting this into the integral gives us: \[ I = \frac{1}{\cos(b-a)} \int \frac{\cos(b-a)}{\cos(x-a) \sin(x-b)} \, dx. \] ### Step 4: Separate the Integral Now we can separate the integral into two parts: \[ I = \frac{1}{\cos(b-a)} \left( \int \frac{\cos(x-b)}{\sin(x-b)} \, dx + \int \frac{\sin(x-a)}{\cos(x-a)} \, dx \right). \] ### Step 5: Use Logarithmic Properties The integrals can be solved using logarithmic functions. The integral of \(\cot\) and \(\tan\) gives us: \[ \int \cot(x-b) \, dx = \log|\sin(x-b)| + C_1, \] \[ \int \tan(x-a) \, dx = -\log|\cos(x-a)| + C_2. \] ### Step 6: Combine the Results Combining these results, we get: \[ I = \frac{1}{\cos(b-a)} \left( \log|\sin(x-b)| - \log|\cos(x-a)| \right) + C. \] ### Step 7: Final Simplification Using the properties of logarithms, we can combine the logs: \[ I = \frac{1}{\cos(b-a)} \log\left|\frac{\sin(x-b)}{\cos(x-a)}\right| + C. \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{1}{\cos(b-a)} \log\left|\frac{\sin(x-b)}{\cos(x-a)}\right| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(cos(x-a))/(sin(x+b))dx=

int(cos(x-a))/(sin(x+b))dx

I=int(1)/(cos(x+a)sin(x+b))dx

int(dx)/(cos x-sin x) is

Evaluate: int(dx)/(cos x-sin x)

int(cos(x-a))/(sin(x+a))dx=

int(sin x)/(cos(x-a))dx

If int(k)/(sin(x-a)cos(x-b))dx=log[(sin(x-a))/(cos(x-b))]+c , then k=

int (cos(x+a))/(sin(x+b))dx

Evaluate: int(1)/(sin(x-a)cos(x-b))dx