Home
Class 12
MATHS
int(sinx+cosx)/(3sinx+4cosx)dx=...

`int(sinx+cosx)/(3sinx+4cosx)dx=`

A

`(1)/(25)(11x+2log|3sinx+4cosx|)+c`

B

`(1)/(25)(11x-2log|3sinx+4cosx|)+c`

C

`(1)/(25)(11x+log|3sinx+4cosx|)+c`

D

`(1)/(25)(11x-log|3sinx+4cosx|)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin x + \cos x}{3 \sin x + 4 \cos x} \, dx\), we can follow these steps: ### Step 1: Set up the integral Let \[ I = \int \frac{\sin x + \cos x}{3 \sin x + 4 \cos x} \, dx. \] ### Step 2: Identify functions Let: - \( f(x) = 3 \sin x + 4 \cos x \) - \( g(x) = \sin x + \cos x \) We will express \( g(x) \) in terms of \( f(x) \) and its derivative. ### Step 3: Find the derivative of \( f(x) \) Calculating the derivative of \( f(x) \): \[ f'(x) = 3 \cos x - 4 \sin x. \] ### Step 4: Set up the equation We want to express \( g(x) \) as: \[ g(x) = a f(x) + b f'(x). \] Substituting \( f(x) \) and \( f'(x) \): \[ \sin x + \cos x = a(3 \sin x + 4 \cos x) + b(3 \cos x - 4 \sin x). \] ### Step 5: Expand and collect terms Expanding the right-hand side: \[ \sin x + \cos x = (3a - 4b) \sin x + (4a + 3b) \cos x. \] ### Step 6: Set up a system of equations By comparing coefficients, we have: 1. \( 3a - 4b = 1 \) (coefficient of \(\sin x\)) 2. \( 4a + 3b = 1 \) (coefficient of \(\cos x\)) ### Step 7: Solve the system of equations From the first equation: \[ 3a - 4b = 1 \quad \text{(1)} \] From the second equation: \[ 4a + 3b = 1 \quad \text{(2)} \] Multiply equation (1) by 3: \[ 9a - 12b = 3 \quad \text{(3)} \] Multiply equation (2) by 4: \[ 16a + 12b = 4 \quad \text{(4)} \] Adding equations (3) and (4): \[ 25a = 7 \implies a = \frac{7}{25}. \] Substituting \( a \) back into equation (1): \[ 3\left(\frac{7}{25}\right) - 4b = 1 \implies \frac{21}{25} - 4b = 1 \implies -4b = 1 - \frac{21}{25} = -\frac{4}{25} \implies b = \frac{1}{25}. \] ### Step 8: Substitute back into the integral Now we have \( a = \frac{7}{25} \) and \( b = \frac{1}{25} \). Therefore, we can rewrite the integral as: \[ I = \int \left( \frac{7}{25}(3 \sin x + 4 \cos x) + \frac{1}{25}(3 \cos x - 4 \sin x) \right) \frac{dx}{3 \sin x + 4 \cos x}. \] ### Step 9: Separate the integral This can be separated into two integrals: \[ I = \frac{7}{25} \int 1 \, dx + \frac{1}{25} \int \frac{3 \cos x - 4 \sin x}{3 \sin x + 4 \cos x} \, dx. \] ### Step 10: Solve the integrals The first integral is straightforward: \[ \frac{7}{25} x. \] For the second integral, let \( u = 3 \sin x + 4 \cos x \), then \( du = (3 \cos x - 4 \sin x) dx \). Thus, \[ \int \frac{du}{u} = \ln |u| + C = \ln |3 \sin x + 4 \cos x| + C. \] ### Final Result Combining both parts, we get: \[ I = \frac{7}{25} x - \frac{1}{25} \ln |3 \sin x + 4 \cos x| + C. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(sinx+2cosx)/(2sinx+cosx)dx

int(sinx+2cosx)/(2sinx+cosx)dx

Evaluate: int(2sinx+3cosx)/(3sinx+4cosx)dx

Evaluate: int(sinx+cosx)/(sinx-cosx)dx

Evaluate: int(2sinx+3cosx)/(3sinx+4cosx)\ dx

Evaluate: int(2sinx+3cosx)/(3sinx+4cosx)\ dx

If int(sinx+3cosx)/(sinx+cosx)dx=(kx)/(2)+ln(sinx+cosx) , then k is_________.

int(sinx*cosx)dx

int(cosx)/(sinx+cosx)dx=