Home
Class 12
MATHS
int(dx)/(alpha^2x^2+beta^2)=...

`int(dx)/(alpha^2x^2+beta^2)=`

A

`(1)/(alphabeta)tan^(-1)((alphax)/(beta))+c`

B

`(1)/(alphabeta)tan^(-1)((betax)/(alpha))+c`

C

`(alpha)/(beta)tan^(-1)((alphax)/(beta))+c`

D

`(beta)/(alpha)tan^(-1)((betax)/(alpha))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^(2)-x-1=0 , then what is (alpha^(2)+beta^(2))/((alpha^(2)-beta^(2))(alpha-beta)) equal to ?

int(dx)/(sqrt((x-alpha)(beta-x)))

If the curves : alpha x^(2)+betay^(2)=1 and alpha'x^(2)+beta'y^(2)=1 intersect orthogonally, prove that (alpha-alpha')beta beta'=(beta-beta')alpha alpha' .

int(dx)/(sin(x-alpha)sin(x-beta))

If alpha,beta are the zeroes of the polynomials f(x)=x^(2)-3x+6 then find the value of (1)/(alpha)+(1)/(beta)+alpha^(2)+beta^(2)-2 alpha beta

If alpha,beta " are the roots of the equation "x^(2) - 2x - 1 =0, "then what is the value of " alpha^(2)beta^(-2)+alpha^(-2)beta^(2)

If alpha and beta are the roots of the equation ax^(2)+bx+c=0" then "int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

If alpha, beta are roots of ax^(2)+bx+c=0 , then : int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=