Home
Class 12
MATHS
int(dx)/(5x^2+7)=...

`int(dx)/(5x^2+7)=`

A

`(1)/(sqrt(35))tan^(-1)(sqrt(5x)/(sqrt7))+c`

B

`(1)/(5sqrt(7))tan^(-1)(sqrt(5x)/(sqrt7))+c`

C

`(sqrt(5)/(sqrt(7)))tan^(-1)(sqrt(5x)/(sqrt7))+c`

D

`(5)/(sqrt(7))tan^(-1)(sqrt(5x)/(sqrt7))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{5x^2 + 7} \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{5x^2 + 7} \] ### Step 2: Factor Out the Constant We can factor out the constant from the denominator: \[ I = \int \frac{dx}{5\left(x^2 + \frac{7}{5}\right)} = \frac{1}{5} \int \frac{dx}{x^2 + \frac{7}{5}} \] ### Step 3: Identify the Standard Form Now, we recognize that the integral \( \int \frac{dx}{x^2 + a^2} \) has a standard result: \[ \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \] In our case, \( a^2 = \frac{7}{5} \), so \( a = \sqrt{\frac{7}{5}} \). ### Step 4: Substitute into the Standard Form Using the standard form, we substitute \( a \): \[ I = \frac{1}{5} \cdot \frac{1}{\sqrt{\frac{7}{5}}} \tan^{-1} \left(\frac{x}{\sqrt{\frac{7}{5}}}\right) + C \] ### Step 5: Simplify the Expression Now simplify \( \frac{1}{\sqrt{\frac{7}{5}}} \): \[ \frac{1}{\sqrt{\frac{7}{5}}} = \frac{\sqrt{5}}{\sqrt{7}} \] Thus, we have: \[ I = \frac{1}{5} \cdot \frac{\sqrt{5}}{\sqrt{7}} \tan^{-1} \left(\frac{x \sqrt{5}}{\sqrt{7}}\right) + C \] ### Step 6: Final Result The final result for the integral is: \[ I = \frac{\sqrt{5}}{5\sqrt{7}} \tan^{-1} \left(\frac{x \sqrt{5}}{\sqrt{7}}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(7+6x-x^2)=

int(dx)/(5+7cos2x)=

" (1) "int(1)/(5x^(2)+7)dx

Find the following integrals : (i) int(dx)/(x^(2)-6x+13)int(dx)/(3x^(2)+13x-10)int(dx)/(sqrt(5x^(2)-2x))

int(dx)/(x(x^(7)+2))

int(dx)/((1+x^(2))^(7/2))

int(dx)/((x^((5)/(2))(x+1)^((7)/(2)))^((1)/(3)))

int(2x+5)/(x^(2)+5x+7)dx

2.Evaluate int(1)/(5x+7)dx

Evaluate: int(2x+5)/(x^(2)+5x-7)dx