Home
Class 12
MATHS
int(sinx)/(1+cos^2x)dx=...

`int(sinx)/(1+cos^2x)dx=`

A

`2cot^(-1)(cosx)+c`

B

`2tan^(-1)(cosx)+c`

C

`cot^(-1)(cosx)+c`

D

`tan^(-1)(cosx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin x}{1 + \cos^2 x} \, dx\), we can follow these steps: ### Step 1: Substitution Let \( t = \cos x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -dt \] Now, we can rewrite the integral in terms of \( t \): \[ \int \frac{\sin x}{1 + \cos^2 x} \, dx = \int \frac{-dt}{1 + t^2} \] ### Step 2: Simplifying the Integral The integral now becomes: \[ -\int \frac{dt}{1 + t^2} \] We recognize that the integral \(\int \frac{dt}{1 + t^2}\) is a standard integral that equals \(\tan^{-1}(t)\). ### Step 3: Evaluating the Integral Thus, we have: \[ -\int \frac{dt}{1 + t^2} = -\tan^{-1}(t) + C \] Substituting back \( t = \cos x \): \[ -\tan^{-1}(\cos x) + C \] ### Step 4: Final Answer The final answer is: \[ \int \frac{\sin x}{1 + \cos^2 x} \, dx = -\tan^{-1}(\cos x) + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/(cos^(2)x)dx=

int (sinx)/(1-cos x)dx

int(sinx)/(a+b cos x)dx

Integrate : int (1-sinx)/(cos^2x)dx.

Find following integrals (i) int(x^(5)-2)/(x^(4))dx (ii) int{x^((3)/(2))+4e^(x)+(1)/(x)}dx (iii) int cosecx{cosecx-cotx}dx (iv) int(1+sinx)/(cos^(2)x)dx

int(sinx)/((1+cos^(2)x))dx

int(cos^(2)x)/(1+sinx)dx+int(sin^(2)x)/(1-cosx)dx=

(i) int(sinx)/(cos^(5)x)dx

" 1."int(sinx)/(cos^(7) x)dx

Evaluate : (i) int(sinx)/((1-4cos^(2)x))dx (ii) int("cosec"^(2)x)/((1-cot^(2)x))dx