Home
Class 12
MATHS
(1)/(ae^(x)+be^(-x))...

`(1)/(ae^(x)+be^(-x))`

A

`(1)/(sqrtab)tan^(-1)(sqrt((b)/(a))e^x)+c`

B

`(1)/(sqrtab)tan^(-1)(sqrt((a)/(b))e^x)+c`

C

`(1)/(sqrtab)tan^(-1)(sqrt((be^x)/(a)))+c`

D

`(1)/(sqrtab)tan^(-1)(sqrt((ae^x)/(b)))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NIKITA PUBLICATION|Exercise MCQ|559 Videos
  • LINE

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|127 Videos

Similar Questions

Explore conceptually related problems

int(ae^(x)+be^(-x))/((ae^(x)-be^(-x)))dx=

(1) y = ae^(4x) -be^(-3x) +c (2) xy = ae^(5x) +be^(-5x)

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

If (sin x+ae^(x)+be^(-x)+sin(1+x))/(x^(3)) has a finite limit L as xx^(3)rarr0, then

If xy = ae^(x) + be^(-x) satisfies the equation Axy'' +By' = xy , then |A-B| is__________.

The differential equation of the curve xy=ae^(x)+be^(-x)+x^(2) is xy_(2)+ay_(1)+bxy+x^(2)-2=0 .then the value

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then

Let lim_(x to 0) f(x) be a finite number, where f(x) = ("sin" x + ae^(x) + be^(-x) + cln (1 + x))/(x^(3)) a,b,e in R